• Title/Summary/Keyword: Yield strength

Search Result 2,052, Processing Time 0.028 seconds

A Study on the Strength of High-Silicon Aluminium Alloys at Elevated Temperatures (고규소(高珪素)-AI합금(合金)의 고온강도(高溫强度)에 관(關)한 연구(硏究))

  • Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.3 no.4
    • /
    • pp.256-261
    • /
    • 1983
  • In this study, the variations of tensile strength and yield strength of Al-20% Si alloy were studied. Copper, magnesium and nickel as alloying elements added from 1% to 3% respectively. The temperature range was from room temperature to $350^{\circ}C$. The refinement of primary silicon crystal was treated with phosphorous addition. The results obtained are as follows: 1. Tensile strnegth and yield strength showed more increased strength in refining treated alloy than that of in nonrefining alloy at elevated temperature. 2. Tensile strength and yield strength were increased with the contents of copper. Tensile strength showed the maximum at $150^{\circ}C$, but yield strength was decreased with increasing temperature. 3. The effect of magnesium addition on tensile strength and yield strength showed the maximum at 1% addition and $150^{\circ}C$. 4. Tensile strength and yield strength showed a slight increase with the content changes of nickel and they were decreased with increasing temperature.

  • PDF

Seismic performance of RC bridge piers reinforced with varying yield strength steel

  • Su, Junsheng;Dhakal, Rajesh Prasad;Wang, Junjie;Wang, Wenbiao
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.201-211
    • /
    • 2017
  • This paper experimentally investigates the effect of yield strength of reinforcing bars and stirrups on the seismic performance of reinforced concrete (RC) circular piers. Reversed cyclic loading tests of nine-large scale specimens with longitudinal and transverse reinforcement of different yield strengths (varying between HRB335, HRB500E and HRB600 rebars) were conducted. The test parameters include the yield strength and amount of longitudinal and transverse reinforcement. The results indicate that the adoption of high-strength steel (HSS) reinforcement HRB500E and HRB600 (to replace HRB335) as longitudinal bars without reducing the steel area (i.e., equal volume replacement) is found to increase the moment resistance (as expected) and the total deformation capacity while reducing the residual displacement, ductility and energy dissipation capacity to some extent. Higher strength stirrups enhance the ductility and energy dissipation capacity of RC bridge piers. While the product of steel yield strength and reinforcement ratio ($f_y{\rho}_s$) is kept constant (i.e., equal strength replacement), the piers with higher yield strength longitudinal bars are found to achieve as good seismic performance as when lower strength bars are used. When higher yield strength transverse reinforcement is to be used to maintain equal strength, reducing bar diameter is found to be a better approach than increasing the tie spacing.

Evaluation on the Maximum Yield Strength of Steel Stirrups in Reinforced Concrete Beams (철근콘크리트 보에 사용된 전단보강철근의 항복강도 제한에 대한 평가)

  • Lee, Jin-Eun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.685-693
    • /
    • 2012
  • The yield strength of shear reinforcement is restricted in the present design codes. In this study, the possibility of the yield strength increase in shear reinforcement is evaluated according to ACI318-08, EC2-02 and CSA-04 by comparing the experimental and calculated results. Three cases were used to analyze the shear strength of the beam. One had no limitation in the yield strength of shear reinforcement, another had restriction on the yield strength of shear reinforcement, and the other had a restriction on the yield strength of shear reinforcement and the shear reinforcement ratio. The study results showed that the case with unlimited shear reinforcement yield strength predicted the test result better than other two cases. Even though the rebar yield strength higher than the strength required in present code was applied to existing shear design equation, the result was reasonable. Therefore, the design equation seemed to be appropriate even if the high-strength shear reinforcement is used in practice based on the existing shear design method.

Measurement of Yield Strength for Electroplated Nickel Film Using Micro-cantilever

  • Moon, Hyoung-Sik;Kim, Jooh-Wan;Kim, Young-Min
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.247-251
    • /
    • 2004
  • We report highly improved yield strength of nickel thin film, prepared using electroplating. The micro-scaled nickel cantilever is found to have significantly higher yield strength than bulk nickel. For the yield strength test, the heights of the micro-scaled cantilever were varied up to 60 ${\mu}{\textrm}{m}$ and electrostatic force was used for actuation. Stress of the bent cantilever was estimated using the FEM large deflection model. The yield strength of the thin nickel film is found to be over five times higher than that of the bulk nickel previously published. Results from this study indicate that metal microstructures can be used for MEMS applications requiring large deflection.

Load capacity of high-strength reinforced concrete slabs by yield line theory

  • Gorkem, Selcuk Emre;Husem, Metin
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.819-829
    • /
    • 2013
  • The objective of this study is to determine whether or not the yield line theory, an effective method widely used for slabs made of ordinary concrete, can be used also for the reinforced concrete slabs made of high-strength concrete. Flexural behavior of simply supported slabs in three different sizes were investigated under concentrated load at mid-span. Additionally, behavior of high strength reinforced concrete slabs with 50 mm and 150 mm reinforcement spacings also studied. Failure loads, deflections, experimental and theoretical failure mechanisms were evaluated. The difference between the moments based on yield line theory and experimental moments varied between 1% to 3%. Experimental and analysis results revealed that yield line analysis could conveniently be employed in the analysis of high strength reinforced concrete slabs.

Characteristics of Barkhausen Noise Properties and Hysteresis Loop on Tensile Stressed Rolled Steels

  • Kikuchi, Hiroaki;Ara, Katsuyuki;Kamada, Yasuhiro;Kobayashi, Satoru
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.427-430
    • /
    • 2011
  • The rolled steels for welded structure applied tensile stress have been examined by means of magnetic Barkhausen noise (MBN) method and of a physical parameter obtained from a hysteresis loop. The behaviors of MBN parameters and coercive force with tensile stress were discussed in relation to microstructure changes. There is no change in MBN parameters and coercive force below yield strength. The coercive force rises rapidly with tensile stress above yield strength. On the other hand, the rms voltage and the peak in averaged rms voltage take a maximum around yield strength and then decreases. The magnetomotive force at peak in the averaged rms voltage shows a minimum around yield strength. These phenomena are attributed to the combined effects of cell texture and dislocation density. In addition, the behaviors of MBN parameters around yield strength may be reflected by the localized changes in strain field due to the formation of dislocation tangles.

Analysis on Deformation Behavior of High Strength Steel using the Finite Element Method in Conjunction with Constitutive Model Considering Elongation at Yield Point (항복점연신이 고려된 유한요소 해석을 통한 고강도강의 변형 거동 연구)

  • Yoon, Seung Chae;Moon, Man Been;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.598-604
    • /
    • 2010
  • Tensile tests are widely used for evaluating mechanical properties of materials including flow curves as well as Young's modulus, yield strength, tensile strength, and yield point elongation. This research aims at analyzing the plastic flow behavior of high strength steels for automotive bodies using the finite element method in conjunction with the viscoplastic model considering the yield point elongation phenomenon. The plastic flow behavior of the high strength steel was successfully predicted, by considering an operating deformation mechanism, in terms of normalization dislocation density, and strain hardening and accumulative damage of high strength steel using the modified constitutive model. In addition, the finite element method is employed to track the properties of the high strength steel pertaining to the deformation histories in a skin pass mill process.

Evaluation of Strength Properties for Bolted Connections with Lumber from Small Diameter Logs

  • Park, Joo-Saeng;Park, Chun-Young;Chun, Su-Kyoung;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.59-65
    • /
    • 2002
  • EYM (European Yield Model), which was adopted in NDS (National Design Specification for wood construction), has been used in Korea without any verification of the analysis of bolted wood connections. In the case of applying lumber from domestic small diameter logs, however, there are some problems with the direct application of EYM ; 1) relatively low dowel bearing strength and dimensional stability due to a large amount of immature wood, 2) effect of MC (moisture contents) on the dowel bearing strength of wood and the yield load of a bolted connection. To evaluate the strength properties of bolted connections with lumber from domestic small diameter logs, effect of MC on the dowel bearing strength of wood was investigated and double shear bolted connection tests were performed. As the MC of wood increased, the dowel bearing strength was linearly reduced, even under 19% MC, which showed that adjustment, not considered in NDS, was required. Double shear bolted connection tests indicated that effect of MC on yield load should be considered in order to determine design value.

Seismic structural demands and inelastic deformation ratios: a theoretical approach

  • Chikh, Benazouz;Mebarki, Ahmed;Laouami, Nacer;Leblouba, Moussa;Mehani, Youcef;Hadid, Mohamed;Kibboua, Abderrahmane;Benouar, Djilali
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • To estimate the structural seismic demand, some methods are based on an equivalent linear system such as the Capacity Spectrum Method, the N2 method and the Equivalent Linearization method. Another category, widely investigated, is based on displacement correction such as the Displacement Coefficient Method and the Coefficient Method. Its basic concept consists in converting the elastic linear displacement of an equivalent Single Degree of Freedom system (SDOF) into a corresponding inelastic displacement. It relies on adequate modifying or reduction coefficient such as the inelastic deformation ratio which is usually developed for systems with known ductility factors ($C_{\mu}$) and ($C_R$) for known yield-strength reduction factor. The present paper proposes a rational approach which estimates this inelastic deformation ratio for SDOF bilinear systems by rigorous nonlinear analysis. It proposes a new inelastic deformation ratio which unifies and combines both $C_{\mu}$ and $C_R$ effects. It is defined by the ratio between the inelastic and elastic maximum lateral displacement demands. Three options are investigated in order to express the inelastic response spectra in terms of: ductility demand, yield strength reduction factor, and inelastic deformation ratio which depends on the period, the post-to-preyield stiffness ratio, the yield strength and the peak ground acceleration. This new inelastic deformation ratio ($C_{\eta}$) is describes the response spectra and is related to the capacity curve (pushover curve): normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), natural period (T), peak ductility factor (${\mu}$), and the yield strength reduction factor ($R_y$). For illustrative purposes, instantaneous ductility demand and yield strength reduction factor for a SDOF system subject to various recorded motions (El-Centro 1940 (N/S), Boumerdes: Algeria 2003). The method accuracy is investigated and compared to classical formulations, for various hysteretic models and values of the normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), and natural period (T). Though the ductility demand and yield strength reduction factor differ greatly for some given T and ${\eta}$ ranges, they remain take close when ${\eta}>1$, whereas they are equal to 1 for periods $T{\geq}1s$.

Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP

  • Ou, Jialing;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.189-200
    • /
    • 2021
  • The compressive strength of circular concrete filled steel tubular (C-CFST) stubs strengthened with carbon fiber reinforced polymer (CFRP) is studied theoretically. According to previous experimental results, the failure process and mechanism of circular CFRP-concrete filled steel tubular (C-CFRP-CFST) stubs is analyzed, and the loading process is divided into 3 stages, i.e., elastic stage, elasto-plastic stage and failure stage. Based on continuum mechanics, the theoretical model of C-CFRP-CFST stubs under axial compression is established based on the assumptions that steel tube and concrete are both in three-dimensional stress state and CFRP is in uniaxial tensile stress state. Equations for calculating the yield strength and the ultimate strength of C-CFRP-CFST stubs are deduced. Theoretical predictions from the presented equations are compared with existing experimental results. There are a total of 49 tested specimens, including 15 ones for comparison of yield strength and 44 ones for comparison of ultimate strength. It is found that the predicted results of most specimens are within an error limit of 10%. Finally, simplified equations for calculating both yield strength and ultimate strength of C-CFRP-CFST stubs are proposed.