• Title/Summary/Keyword: Material testing machine

Search Result 330, Processing Time 0.022 seconds

Study of Optimal Weaving Shape according to Formability and Mechanical Properties of Polyethylene-based Self-reinforced Composite (폴리에틸렌 기반 자기강화복합재료의 성형성 및 기계적 특성에 따른 최적 제직형상 수치해석적 연구)

  • Yu, Seong-hun;Lee, Pil Gyu;Lee, Jong-hyuk;Kim, neul sae rom;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.58-67
    • /
    • 2022
  • In this study, self-reinforced composite(SRC) was prepared using HDPE(High density polyethylene) fabric(2×2 plain) and LDPE(Low density polyethylene) film. The optimal conditions were derived by manufacturing specimens according to the temperature of 100 ~ 140℃ using a hot stamping at a pressure of 100bar for 10 minutes in order to find the optimal conditions for the SRC. The manufactured SRC was analyzed for tensile properties, compressive strength and shear strength through a universal testing machine(UTM). As a result of the measurement, the P3 specimen prepared by hot stamping at a temperature of 130℃ and a pressure of 100bar for 10 minutes was found to be higher than other specimens with tensile strength and tensile modulus of 210MPa and 19GPa, compressive strength 69MPa and shear strength 13MPa and it was considered to be optimal condition. Finally, the composite material according to the fabric structure was modeled using experimental values and the physical properties of the composite material according to the fabric structure were predicted using GeoDict and Digimat.

A Study on the Wear Characteristics of Aluminizing Steel ( 1 ) - Wear in Run-in Period on Rolling-Sliding Contact - (알루미나이징 강의 마모특성에 관한 연구 ( 1 ) - Rolling-Sliding 마찰의 초기마모영역을 중심으로 -)

  • 이규용
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 1978
  • It is well known that the aluminizing steel is excellent in corrosion resistance and heat resistance. Therefore it has been used as boiler parts, heat exchanger parts and guide rails which are used under comparatively simple conditions. Recently, it has been noticed that aluminizing steel has high resistance to various atmosphere, high temperature oxidation and seawater resistance. So its usage has been extended widely to the production of parts such as intake and exhaust valve of internal combustion engine, turbine blade and pipelines On ships which required such properties. It is considered that aluminium coated steel is excellent in wear resistance because of high hardness on main ingredient FezAIs of Fe-AI alloy layer existed in diffusion coating layer. And it will beused as a new material taking wear resitance with seawater resistance in marine field. However it is difficult to findout any report concering the wear behaviors or properties of alum in izing steel. In this study the experiment was carried out under the condition of rolling-sliding contact using an Amsler-type wear testing machine at 0.80, 0.91, 1. 10, 1. 25% of slip ratio and 55.43, 78.38, 110.85 kg/mm^2 of Hertz's contact stress in run-in period for the purpose of service-ability test of aluminizing steel as a wear resisting material and obtaining the available design data. The followings are the obtained results from the experimen tal study; 1) The 2nd diffusion material has most excellent wear resistance. This material has brought out about 18% decrease of wear weight in a lower friction load level and 40~G decrease in a higher level comparing to the raw material. 2) Satisfactory effect of wear resistivity cannot be much expected in 2nd diffusion specimens. This is considered due to the formation of fine void in the alloy layer near the boundary to the aluminium layer. 3) Fracture on friction surface of aluminizing steel by the rolling-sliding contact is spalling, and spalling crack occurres initially beneath the specimen surface near the boundary in diffusion coating layer.

  • PDF

Microbiological Hazard Analysis for HACCP System Application to Vinegared Pickle Radishes (식초절임 무의 HACCP 시스템 적용을 위한 미생물학적 위해 분석)

  • Kwon, Sang-Chul
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.69-74
    • /
    • 2013
  • This study has been performed for 150 days from February 1 - June 31, 2012 aiming at analyzing biologically hazardous factors in order to develop HACCP system for the vinegared pickle radishes. A process chart was prepared as shown on Fig. 1 by referring to manufacturing process of manufacturer of general vinegared pickle radishes regarding process of raw agricultural products of vinegared pickle radishes, used water, warehousing of additives and packing material, storage, careful selection, washing, peeling off, cutting, sorting out, stuffing (filling), internal packing, metal detection, external packing, storage and consignment (delivery). As a result of measuring Coliform group, Staphylococcus aureus, Salmonella spp., Bacillus cereus, Listeria Monocytogenes, E. coli O157:H7, Clostridium perfringens, Yeast and Mold before and after washing raw radishes, Bacillus cereus was $5.00{\times}10$ CFU/g before washing but it was not detected after washing and Yeast and Mold was $3.80{\times}10^2$ CFU/g before washing but it was reduced to 10 CFU/g after washing and other pathogenic bacteria was not detected. As a result of testing microorganism variation depending on pH (2-5) of seasoning fluid (condiment), pH 3-4 was determined as pH of seasoning fluid as all the bacteria was not detected in pH3-4. As a result of testing air-borne bacteria (number of general bacteria, colon bacillus, fungus) depending on each workplace, number of microorganism of internal packing room, seasoning fluid processing room, washing room and storage room was detected to be 10 CFU/Plate, 2 CFU/Plate, 60 CFU/Plate and 20 CFU/Plate, respectively. As a result of testing palm condition of workers, as number of general bacteria and colon bacillus was represented to be high as 346 $CFU/Cm^2$ and 23 $CFU/Cm^2$, respectively, an education and training for individual sanitation control was considered to be required. As a result of inspecting surface pollution level of manufacturing facility and devices, colon bacillus was not detected in all the specimen but general bacteria was most dominantly detected in PP Packing machine and Siuping machine (PE Bulk) as $4.2{\times}10^3CFU/Cm^2$, $2.6{\times}10^3CFU/Cm^2$, respectively. As a result of analyzing above hazardous factors, processing process of seasoning fluid where pathogenic bacteria may be prevented, reduced or removed is required to be controlled by CCP-B (Biological) and threshold level (critical control point) was set at pH 3-4. Therefore, it is considered that thorough HACCP control plan including control criteria (point) of seasoning fluid processing process, countermeasures in case of its deviation, its verification method, education/training and record control would be required.

A Study on the Development of Diagnosing System of Defects on Surface of Inner Overlay Welding of Long Pipes using Liquid Penetrant Test (PT를 이용한 파이프내면 육성용접부 표면결함 진단시스템 개발에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.121-127
    • /
    • 2018
  • A system for diagnosing surface defects of long and large pipe inner overlay welds, 1m in diameter and 6m in length, was developed using a Liquid Penetrant Test (PT). First, CATIA was used to model all major units and PT machines in 3-dimensions. They were used for structural strength analysis and strain analysis, and to check the motion interference phenomenon of each unit to produce two-dimensional production drawings. Structural strength analysis and deformation analysis using the ANSYS results in a maximum equivalent stress of 44.901 MPa, which is less than the yield tensile strength of SS400 (200 MPa), a material of the PT Machine. An examination of the performance of the developed equipment revealed a maximum travel speed of 7.2 m/min., maximum rotational speed of 9 rpm, repeatable position accuracy of 1.2 mm, and inspection speed of $1.65m^2/min$. The results of the automatic PT-inspection system developed to check for surface defects, such as cracks, porosity, and undercut, were in accordance with the method of ASME SEC. V&VIII. In addition, the results of corrosion testing of the overlay weld layer in accordance with the ferric chloride fitting test by the method of ASME G48-11 indicated that the weight loss was $0.3g/m^2$, and met the specifications. Furthermore, the chemical composition of the overlay welds was analyzed according to the method described in ASTM A375-14, and all components met the specifications.

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.

Evaluation of Mechanical Properties and Low-Velocity Impact Characteristics of Balsa-Wood and Urethane-Foam Applied to Impact Limiter of Nuclear Spent Fuel Shipping Cask (사용후핵연료 수송용기 충격완충체에 적용되는 발사목과 우레탄 폼의 기계적 특성 및 저속충격특성 평가 연구)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Choi, Woo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1345-1352
    • /
    • 2012
  • This paper aims to evaluate the low-velocity impact responses and mechanical properties of balsa-wood and urethane-foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane-foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa-wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low-velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5 J. The experimental results showed that both the urethane-foam and the balsa-wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane-foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa-wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask.

A STUDY ON THE PHYSICAL PROPERTIES AND COLOR STABILITY OF MAXILLOFACIAL PROSTHETIC SILICONE MATERIAL (악안면 보철용 실리콘의 물리적 특성 및 색조안정성에 관한 연구)

  • Park, Chan-Jin;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.330-343
    • /
    • 1997
  • Extraoral maxillofacial prostheses are essential for restoring facial structures that are lost as a result of congenital missing, injuries from accidents, surgical treatments of head and neck cancer. Recently, silicone is the most useful material for this purpose and is more advantageous than other maxillofacial prosthetic materials. However, there are some problems for long-term usage of silicone prostheses due to tear and color change. These are major contributing environmental factors to those problems that are such as ultraviolet light, cleansing agents, changes in humidity and successive adhesion and removal. The aim of this study is to evaluate the physical properties and color changes of maxillofacial prosthetic silicone material by those environmental factors using A-2186 silicone material (Factor II, USA) and two pigments, cadmium yellow medium and cosmetic red. Aluminium molds were fabricated according to the ASTM No. D412 & D624 specifications and resulted specimens from molds were fabicated and treated as follows. Control group and experimental I group were fabricated with 0.1% wt. pigment mixing in silicone elastomer and II-1 group, II-2 group of experimental II group were fabricated with 0.2%, 0.3% wt. pigment mixing in silicone elastomer, respectively. Control group was kept in darkroom at room temperature, I-1 group was kept under natural sunlight during 1week, I-2 group was soaked in 20% soap water during 1wk. I-3 group was successively adhered and removed 200 times on inner region of arm using Daro adhesive-33. Experimental II groups were kept in darkroom at room temperature. Instron universal testing machine was used to measure the % elongation, tensile strength, tear strength of control, experimental I, II groups and reflectance spectrophotometer(COLOR EYE-3000, Macbeth, USA) was used to measure the color differences between control group and experimental I group. The results were as follows : 1. When compared with control group, natural weathering group and 20% soap-water soaking group had no significant differences in % elongation(p>0.05). 2. 200 times successive adhesion and removal group, 0.2% wt. pigment group and 0.3% wt. pigment group had significant decreases in % elongation(p<0.05). 3. Natural weathering group, 20% soap-water soaking group and 200 times successive adhesion and removal group had no significant differences in tensile strength (p>0.05). 4. 0.2%, 0.3% wt. pigment groups had significant decreases in tensile strength(p<0.05). 5. Values of all experimental groups were decreased in tear strength. and 200 times successive adhesion and removal group had significant decrease in tear strength(p<0.05). 6. Natural weathering group and 20% soap-water soaking group had significant color differences(${\Delta}E$) and it could be detectable to naked eye(p<0.05). 7. Color differences between control group and 200 times adhesion and removal group were not detectable to the naked eye (${\Delta}E<1.0$).

  • PDF

A COMPARISON OF THE BOND STRENGTHS BETWEEN SOME CEMENTS AND STAINLESS STEEL MATERIAL (Stainless steel crown을 위한 수종 시멘트의 접착력 비교)

  • Kim, Hong-Ryoul;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.3
    • /
    • pp.528-537
    • /
    • 1999
  • The purpose of this study was to analyze and compare the bond strengths between stainless steel plate and zinc phosphate cement, polycarboxylate cement and glass ionomer cement, which are frequently used for cementation of stainless steel crowns. Three cementing materials were glued to the poles standing above stainless steel plate, bovine teeth, light cured glass ionomer restorative material and amalgam. And the tensile bond strengths between them were measured with universal testing machine and the results were statistically processed using ANOVA and Student t-test. The obtained results were as follows : 1. On stainless steel plate, glass ionomer cement and polycarboxylate cement showed higher tensile bond strengths compared to zinc phosphate cement, with no significant difference between the former two. 2. On the surface of bovine teeth and glass ionomer restorative material, glass ionomer cement showed highest bond strength, followed by polycarboxylate cement and zinc phosphate cement in order. 3. For amalgam restoration, polycarboxylate cement and glass ionomer cement showed higher tensile bond strengths than zinc phosphate cement, with no significant difference between the former two.

  • PDF

Shear bond strength of veneering porcelain to zirconia and metal cores

  • Choi, Bu-Kyung;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2009
  • STATEMENT OF PROBLEM. Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material's clinical use. PURPOSE. The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy). MATERIAL AND METHODS. 15 rectangular ($4\times4\times9mm$) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the oneway ANOVA and the Tukey's test ($\alpha$= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern. RESULTS. The mean shear strength ($\pm\;SD$) in MPa was 25.43 ($\pm\;3.12$) in the zirconia group, 35.87 ($\pm\;4.23$) in the base metal group, 38.00 ($\pm\;5.23$) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey' s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core. CONCLUSION. There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.

Comparison of Microleakage and Compressive Strength of Different Base Materials (여러 치과 와동 기저재용 재료들의 미세누출 및 압축강도 비교)

  • Jang, Eunyeong;Lee, Jaesik;Nam, Soonhyeun;Kwon, Taeyub;Kim, Hyunjung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.2
    • /
    • pp.168-175
    • /
    • 2021
  • This study compared the microleakages and compressive strengths of various base materials. To evaluate microleakages, 50 extracted permanent premolars were prepared. The teeth divided into 5 groups of 10 each according to the base materials. Cavities with a 5.0 mm width, 3.0 mm length, and 3.0 mm depth were formed on the buccal surfaces of the teeth. After filling the cavities with different base materials, a composite resin was used for final restoration. Each specimen was immersed in 2% methylene blue solution and then observed under a stereoscopic microscope (× 30). To evaluate the compressive strength, 5 cylindrical specimens were prepared for each base material. A universal testing machine was used to measure the compressive strength. The microleakage was highest in the Riva light cureTM group and lowest in the BiodentineTM and Well-RootTM PT groups. For the compressive strengths, in all groups, acceptable strength values for base materials were found. The highest compressive strength was observed in the Fuji II LCTM group and the lowest strength in the Well-RootTM PT group.