• Title/Summary/Keyword: Material testing machine

Search Result 330, Processing Time 0.022 seconds

Investigations about the Fracture behaviour on High-Temperature Brazed NiCr20TiAl/BNi-5 Joints (고온 Brazed Joint 파괴 거동에 대한 연구)

  • Steffens, H.D.;Bae, S.C.;Wielage, B.;Dammer, R.
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.18-24
    • /
    • 1984
  • With the use of a new method the deformation mechanism of high-temperature-brazed joints can be obtained in a very short time. For that purpose a SEM(Scanning Electron Microscope) was equipped with a high temperature tensile testing machine. By means of SEM-investigation the damage behaviour of high-temperature-brazed joints is exa mined at elevated temperature. Based on these it is possible to make a qualification of the influence over single parts on the damage beginning and behaviour in dependence of temperature. This shall be shown exemplarily for the high temperature material NiCr20TiAl (Nimonic 80A).

  • PDF

Thermoelastic Behaviors of Fabric Membrane Structures

  • Roh, Jin-Ho;Lee, Han-Geol;Lee, In
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.319-332
    • /
    • 2008
  • The thermoelastic behaviors of an inflatable fabric membrane structure for use in a stratospheric airship envelope are experimentally and numerically investigated. Mechanical tensile properties of the membrane material at room, high, and low temperatures are measured using an $Instron^{(R)}$ universal testing machine and an $Instron^{(R)}$ thermal chamber. To characterize the nonlinear behavior of the inflated membrane structure due to wrinkling, the bending behavior of an inflated cylindrical boom made of a fabric membrane is observed at various pressure levels. Moreover, the envelope of a stratospheric airship is numerically modeled based on the thermoelastic properties of the fabric membrane obtained from experimental data, and the wrinkled deformed shape induced by a thermal load is analyzed.

Joints Strength Evaluation of light Structure material (경량 구조재료의 접합강도평가)

  • Jang C. S.;Yi W.;Oh S. K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.234-238
    • /
    • 2005
  • One approach to testing the suitability of a adhesive joint for a particular application is to build and test to destruction of a representative sample of the joint. The nondestructive test will not measure strength directly but will measure a parameter which can be correlated to the strength. It is therefore, essential that a suitable nondestructive test is chosen and its results are correctly interpreted. In this paper, typical ultrasonic signal analysis in adhesive joints are evaluated together with interface stress from the result of finite element analysis.

  • PDF

Effect of Eco-friendly Inorganic Flame Retardants on Mechanical and Flame-Retardant Properties of EPDM Compound

  • Do, Jong Hwan;Kim, Do Young;Seo, Kwan Ho
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • In this study, the mechanical and flame-retardant properties of ethylene-propylene-diene-termonomer (EPDM) based rubber compounds and various other environmentally friendly inorganic flame retardants were investigated. Alumina trihydrate (ATH) and magnesium hydroxide (MDH) were used as inorganic flame retardants. The mechanical properties after thermal oxidation aging and the flame-retardant properties of the EPDM compounds were measured using a moving die rheometer, a universal testing machine, a compression set, and a UL 94 V flammability test. We focused on how the properties were affected by the type and amount of flame retardants. The results demonstrated that the optimal mechanical and flame-retardant V-0 grade properties were obtained at an ATH content of 200 phr.

Properties of $SiC/MoSi_2$ Composites Prepared by Reaction Sintering Method (반응소결에 의한 $SiC/MoSi_2$ 복합체의 특성)

  • 한인섭;양준환;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.399-406
    • /
    • 1994
  • The SiC/MoSi2 composite material was prepared by infiltration with the mixture of metal Si and MoSi2 into the preform of $\alpha$-SiC and graphite under the vacuum atmosphere of 10-1 torr. The mechanical properties, phases and microstructural characteristics have been investigated by employing an universal testing machine, scanning electron microscope and X-ray diffractometer. With the increase of MoSi2/Si mixing content, the quantity of the residual silicon phase was decreased and the hardness and fracture toughness of composite materials were increased. Also, as the infiltration temperature increased, a lot of fine-grained $\beta$-SiC phases, which were produced from the reaction of graphite and liquid silicon melt, were transformed to $\alpha$-SiC phases.

  • PDF

Optimization for Permeability and Electrical Resistance of Porous Alumina-Based Ceramics

  • Kim, Jae;Ha, Jang-Hoon;Lee, Jongman;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.548-556
    • /
    • 2016
  • Recently, porous alumina-based ceramics have been extensively applied in the semi-conductor and display industries, because of their high mechanical strength, high chemical resistance, and high thermal resistance. However, the high electrical resistance of alumina-based ceramics has a negative effect in many applications due to the generation of static electricity. The low electrical resistance and high air permeability are key aspects in using porous alumina-based ceramics as vacuum chucks in the semi-conductor industry. In this study, we tailored the pore structure of porous alumina-based ceramics by adjusting the mixing ratio of the starting alumina, which has different particle sizes. And the electrical resistance was controlled by using chemical additives. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimetry, capillary flow porosimetry, a universal testing machine, X-ray diffraction, and a high-resistance meter.

An Experimental Study on the Thermal Shock Behavior of PC/PET Alloy (PC/PET 합금의 열충격 특성에 관한 연구)

  • 유인자;이영순;이재학
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.64-71
    • /
    • 1995
  • Tests were performed to evaluate the effect of thermal shock behavior on the mechanical properties of PC(poly-carbonate) and PET(polyethylene-terephthalate) with MBS(methylmethacrylate-butadiene-styrene) alloy. Five different material weight fraction for PC/PET were employed : 0/100, 25/75, 50/50, 75/25, and 100/0. Three different weight fraction of MBS were added to each PC/PET : 0, 3, and 9. Therefore fifteen different types of PC/PET/MBS were prepared using single screw extrude. and injection molding machine. One thermal shock cycle consisted of each one hour stay at -$40^{\circ}C$ chamber and $+80^{\circ}C$ chamber without delay. Specimens were thermal shocked up to 20 and 40 cycles. Specific mechanical properities considered in this study include tensile, izod impact, and high rate Impact behaviors. In addition, the morphology of the fractured surface after Izod impact testing was investigated by the SEM (scanning electron microscope).

  • PDF

Wear Characteristics on Friction Velosity and Force of Plasma Sprayed Ceramic Coating Layer (마찰속도와 마찰력의 변화에 따른 세라믹 용사 코팅재의 마모특성)

  • Kim, G.S.;Kim, S.I.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.56-61
    • /
    • 2002
  • This study is to investigate the wear behaviors of thermally sprayed ceramic coating by a pin-on-disk wear testing machine. The test specimens were plasma sprayed TiO2 coating material on carbon steel substrate(S45C) with Ni-4.5%Al alloy bond coating. Wear characteristics, friction coefficient and wear rates, were conducted at the three kinds of loads and velosities. Wear environments were dry and lubrication friction. The friction coefficients of TiO2 coating specimen in dry friction were almost same according to increase the friction velocity. The wear rate increased when the friction force is high. In lubrication friction, the wear hardly occured and friction coefficient was about 0.1. The adhesiveness of TiO2 in lubrication friction is larger than that in dry one.

  • PDF

Deformation Pattern of the Pyramid-Core Welded Sandwich Sheet Metal in L-Bending (피라미드코어재를 갖는 접합판재의 L-굽힘가공 특성)

  • Kim, J.H.;Chung, W.J.;Cho, Y.J.;Kim, H.G.;Hong, M.J.;Yooe, J.S.;Seong, D.Y.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.316-319
    • /
    • 2008
  • The L-bending of inner-structure bonded sandwich sheet metal is examined by using a bending die attached to the material testing machine. The specimen is composed of top and bottom layers and a middle layer of pyramid-core structure and each layer is bonded by brazing. The variables chosen for experiments were clearance between punch and die, location of bend line on the specimen surface and clamping type of specimen during L-bending. Effects of these variables on deformation of specimen around die-corner radius were investigated. It was shown that the irregular shapes of recess are formed in the inner layer of bended parts and they greatly depend on working conditions.

  • PDF

A Study on the Friction Characteristics of Automotive Composites Brake Pads Using Taguchi Method (다구치 방법을 이용한 복합재료 자동차용 마찰재의 마찰특성에 관한 연구)

  • Kim, Yun-Hae;Lee, Jeong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.660-666
    • /
    • 2002
  • It has many variables and factors to design the friction materials for automotive brake pads. The purpose of this study is to develop the proper method for design of low-cost and to know friction characteristics of each raw materials. For the purpose of examining the effect of each major raw materials, we used the Taguchi L9(3$^4$)orthogonal matrix and 1/5 scale dynamo machine for evaluation of the friction characteristics of composite brake pads. By adapting the Taguchi method, it is easy to investigate the influence of each component in complicated composites friction materials. After analyzing the testing results by the Taguchi method, the effect of factors and levels influenced friction behavior was studied.