• Title/Summary/Keyword: Material simulation

Search Result 3,722, Processing Time 0.03 seconds

전단 모드를 이용한 초음파 모터의 시뮬레이션

  • Lee, Sang-Ho;Ryu, Ju-Hyeon;Jeong, Yeong-Ho;Yun, Hyeon-Sang;Hong, Jae-Il;Baek, Dong-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.75-75
    • /
    • 2009
  • In this study, in order to develop lead-free share-mode ultrasonic motor, finite element method(FEM) simulation were executed using ATILA simulator and their results were investigated. Share mode ultrasonic motor models are made up stator and two ceramic disks and it simulated according to the different ceramic disk dimensions. The results shows optimum ceramic disk dimensions and design.

  • PDF

Validating of small chamber method by CFD simulation and VOCs emission rate of construction materials. (소형 챔버법에 의한 건축자재의 휘발성유기화합물 방출량 측정 및 CFD해석)

  • Kim, Yun-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.99-110
    • /
    • 2006
  • This study focused on the emission rate of the construction materials. The method of study is as follows. First, validation of small chamber method to determine emission rate of construction material was performed by CFD simulation. For the result of this study, uniform air velocity in small chamber was founded, and small chamber as a test material for emission rate was validated. Second, the construction materials were categorized by their feature and the emission rate of volatile organic compound was determined. Totally, VOCs emission rate of 49 materials were determined.

Design of the CMOS Low-Voltage Regulation Circuit (CMOS 소자를 이용한 저전압 안정화 회로 설계)

  • Kim, Yeong-Min;Lee, Keun-Ho;Hwang, Jong-Sun;Kim, Jong-Man;Park, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.124-127
    • /
    • 2002
  • A CMOS voltage regulation circuit for use at low-voltage is proposed. Circuits for a positive and for a negative current regulation are presented and are designed with commercial CMOS technology. The voltage regulation that is stable over ambient temperature variations is an important component of most data acquisition systems. These results are verified by the H-SPICE simulation $0.8{\mu}m$ parameter. As the result, the temperature dependency of output voltage is $0.57mV/^{\circ}C$ and the power dissipation is 1.8 mV on 5V supply voltage.

  • PDF

Normalized characteristics of the photonic bandgaps in two-dimensional photonic crystals with a hexagonal lattice by FDID simulation (FDTD 시뮬레이션을 이용한 육방정계형 2차원 광자결정에서의 광자밴드갭 특성 정규화)

  • Yeo, Jong-Bin;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.38-38
    • /
    • 2009
  • Characteristics of the photonic bandgaps (PBGs) in two-dimensional photonic crystals (2D PCs) with a hexagonal lattice have theoretically studied using a finite difference time domain (FDTD) simulation. In this research, we propose a concept of optical coverage ratio (OCR) as a new structural parameter to determine the PBGs for E-polarized light. The OCR is an optically compensated filling factor. It is possible to normalize the PBGs of 2D PCs by introducing the OCR.

  • PDF

Impact Analysis According to Material of Hand Phone (휴대폰 재질에 따른 충격 해석)

  • Cho, Jae-Ung;Min, Byoung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.69-75
    • /
    • 2009
  • This study is analyzed by impact simulation according to material property at terminal case of hand phone. Maximum equivalent stress or strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest stress or strain is shown at aluminium alloy. The value of maximum equivalent stress is shown as 6.5 Mpa in case of plastic, magnesium alloy and aluminium alloy. Maximum shear strain at plastic is 40 times as great as that at magnesium alloy. And the next greatest strain is shown at aluminium alloy. The value of deformation or strain at magnesium alloy and aluminium alloy is not different.

  • PDF

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방종이작동기(Electro-Active Paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.73-76
    • /
    • 2007
  • Electro-Active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, which result good correlation with each other.

  • PDF

A Study on the Cushion Package Design of a Monitor using Finite Element Method (유한요소법을 이용한 모니터의 완충 포장재 설계에 관한 연구)

  • H.B.L.;Park, Sang-Hu;Kim, Won-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.88-93
    • /
    • 2000
  • The reduction of the cushion material such as Expanded Polystyrene (EPS) is one of the urgent tasks of the package design process in home electrical appliances considering environmental protection. EPS reduction often causes the structural damage of products, which must be protected in the environment of transportation. CAE simulation can help the efficient package design with low material cost. The mechanical drop simulation of packaged product was performed with commercial FEM code and Taguchi approach was used partially to determine the dominant design parameters. As results of this study, about 20% reduction of EPS was accomplished in the monitor package design.

  • PDF

Nano-behavior of material beneath an indenter in nanoindentation (나노 인덴테이션에 의한 나노재료의 경도예측 (1) 나노 인덴테이션에서 압자 밑 재료의 나노거동)

  • Kim, J.;Park, J.W.;Kim, Y.S.;Lee, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.111-115
    • /
    • 2003
  • Nanoindentation is simply an indentation test in which the length scale of the penetration is measured in nanometres rather than microns or millimetres, the latter being common in conventional hardness tests. Three-dimensional molecular dynamics simulations have been conducted to evaluate the nanoindentation test. Molecular dynamics simulations were carried out on single crystal copper by varying crystal orientations to investigate nano-behavior of material beneath an indenter in nanoindentation. Morse potential function was used as an interatomic force between indenter and thin film. The result of the simulation shows that crystal orientation significantly influenced the slip system, dislocation nucleation and dislocation behavior.

  • PDF

Development of Technique to Improve the Formability of the Rear Floor in Series Stamping Process (연속 스탬핑 작업시 리어 플로어 성형성 향상기술 개발)

  • 김동환;이정민;고영호;차해규;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.25-28
    • /
    • 2004
  • A fracture was generated by change of clearance and deterioration of material properties on the sheet metal through temperature. This paper describes the results of a prediction about the temperature of the sheet metal during continuous stamping process, because the temperature increase of the sheet metal has a detrimental effect on formability. To analyze the temperature increase of the sheet metal during continuous stamping process, tensile and friction tests were performed from room temperature to 300$^{\circ}C$ at warm condition in this study. As temperature increase, tensile strength, elongation, strain hardening exponent and anisotropy coefficient for each specimens were decreased. On the other hand, friction coefficients were increased. From the FE-simulation results, temperature upward tendency was identified on dies and sheet metal. These observations are rationalized on the basis of the material properties, friction coefficient vs. temperature relationship for the sheet.

  • PDF

A Variation of Maximum Stress with Axial Loading in Porcelain Insulators for Transmission Line using ANSYS (ANSYS를 이용한 송전용 자기재 애자의 장력에 따른 특성 변화)

  • Woo, B.C.;Han, S.W.;Cho, H.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.104-107
    • /
    • 2003
  • The ageing cause in many porcelain suspension insulators which occur on transmission and distribution line with dead-end stings is mechanical stress in interface between porcelain and cement materials. It is known that the principal mechanical stress which give electrical failure is the results of the displacement is due to cement growth. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of cement for suspension insulator. These simulation analysis and experimental results show that cement volume growths affect severely to be mechanical failure ageing. These simulation analysis and experimental results show that axial loading affects of Porcelain insulators severely to be mechanical failure ageing.

  • PDF