• Title/Summary/Keyword: Material simulation

Search Result 3,719, Processing Time 0.032 seconds

The Influence of Forest Fire on the Polymer Insulator for Transmission Lines (송전용 폴리머 애자에 대한 산불 영향 평가)

  • Choi, In-Hyuk;Lee, Dong-Il;Lee, Chul-Ho;Kang, Byoung-Kyu;Lee, Won-Kyo;Park, Jun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.787-792
    • /
    • 2007
  • To understand the effects of forest fires on polymer insulators for transmission lines, the forest fire simulation tests were performed with polymer and porcelain insulators at Gochang testing center. These tests consisted of energizing 90 kV at line-to-ground voltage of 154 kV lines and open flame rising up to $600-630^{\circ}C$ as being measured at insulator surface. Mechanical and electrical characteristics such as specific mechanical load, leakage current, low frequency dry flashover voltage and impulse flashover voltage were analyzed for the polymer insulators before, during and after simulation tests compared with porcelain insulators. At the end of fire simulation tests, there was no detrimental deterioration of any insulators. All insulators passed the criteria of KEPCO specification. This study showed that forest fire simulation had no impact on polymer insulators.

Prediction of Air Movement and Temperature Distribution at Different Store Methods Using 3-D CFD Simulation in Forced-Air Cooling Facility

  • Yang, G.M.;Koh, H.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.65-72
    • /
    • 2002
  • Temperature is the most influential environment parameter which affects the quality change of agricultural products in cold storage. Therefore, it is essential to keep the uniform temperature distribution in the storage room. This study was performed to analyze the air movement and temperature distribution in the forced recirculating cold storage facility and to simulate optimum storage method of green groceries using 3-D CFD(three dimensional computational fluid dynamics) computer simulation which applied the standard $textsc{k}$-$\varepsilon$ turbulence model and FVM(finite volume method). The simulation was validated by the experimental results for onion storage and the simulation model was used to simulate the temperature and velocity distribution in the storage room with reference to the change of storage method such as location of storage, no stores, bulk storage, and pallet storage. In case of no stores, internal airflow was circulated without stagnation and consequently air movement and temperature distribution were uniform. In case of bulk storage, air movement was stagnated so much and temperature distribution of onion was not uniform. Furthermore, the inner temperature of onion roses more than the initial temperature of storage. In case of pallet storage, air movement and temperature distribution of onion were so uniform that the danger of quality change was decreased.

  • PDF

Simulation and Modeling of Polyethylene/Clay Nanocomposite for Dielectric Application

  • Zazoum, Bouchaib;David, Eric;Ngo, Anh Dung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.175-181
    • /
    • 2014
  • In this paper, the simulation and modeling of a polyethylene/clay nanocomposite were undertaken to predict the nanocomposite's dielectric behavior and to help design a nanocomposite material with optimum electrical properties for electrotechnical or electronic applications. A 3-D simulation model using the finite elements method was employed in order to study the effective permittivity and electric field distribution of two-phase nanocomposite materials for ordered and random distributions of inclusions in a low-loss host matrix such as polyethylene. The influence of the dispersion of reinforcing particles, and of the permittivity and radius of the inclusions, was analysed. The simulation results were compared with alternative, known theoretical solutions obtained from classical models, and were found to be in good agreement. The numerical results also indicate that for fixed volume fractions of nanoparticles the effective permittivity of the mixture, for ordered and random distributions, does not vary with the degree of dispersion. The variation of the effective permittivity with the particle radius is shown, using numerical data, to agree with the analytical modules.

Development of Electron Beam Monte Carlo Simulation and Analysis of SEM Imaging Characteristics (전자빔 몬테 카를로 시물레이션 프로그램 개발 및 전자현미경 이미징 특성 분석)

  • Kim, Heung-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.554-562
    • /
    • 2012
  • Processing of Scanning electron microscope imaging has been analyzed in both secondary electron (SE) imaging and backscattered electron (BSE) image. Because of unique characteristics of both secondary electron and backscattered electron image, mechanism of imaging process and image quality are quite different each other. For the sake of characterize imaging process, Monte Carlo simulation code have been developed. It simulates electron penetration and depth profile in certain material. In addition, secondary electron and backscattered electron generation process as well as their spatial distribution and energy characteristics can be simulated. Geometries that has fundamental feature have been imaged using the developed Monte Carlo code. Two, SE and BSE images generation process will be discussed. BSE imaging process can be readily used to discriminate in both material and geometry by simply changing position and direction of BSE detector. The developed MC code could be useful to design BSE detector and their position. Furthermore, surface reconstruction technique is possibly developed at the further research efforts. Basics of Monte Carlo simulation method will be discussed as well as characteristics of SE and BSE images.

Energy Performance Evaluation of A Primary School Building for Zero Energy School (제로에너지 스쿨을 위한 초등 교육시설의 에너지 성능평가)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Park, Jae-Wan;Kim, Hyo-Jung;Lee, Chul-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-126
    • /
    • 2009
  • This study analyzed the standard school's energy usage and patterns as the zero-energy goal of primary school building, and proposed the energy reduction process of school building using energy analysis computing simulation tool. As a analysis simulation tool, Visual DOE 4.0 is used. For analysis of actual energy usage, selected primary school that is standard in the nation's energy consumption. Standard of the school's energy consumption analysis were devided into electric and gas energy. Input parameters of the simulation program based on the literature material and field survey material. after, but it was calibrated to comparison with the standard school's energy consumption. Finally, its energy usage analyzed by component and made the priority order of energy saving. Applied energy saving technologies are envelopment insulation, high efficiency lighting, high performance HAVC system and used active equipment system of solar collector and photovoltaic generation for additional savings.

  • PDF

Simulation and Light Impulse Test Results of Shieldless Vacuum Interrupter (아크쉴드가 없는 진공인터럽터의 유한요소해석 및 뇌임펄스 성능)

  • Yoon, Jae-Hun;Kim, Sung-Il;Kim, Boung-Ouk;Moon, Ki-Lim;Lim, Gee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.45-45
    • /
    • 2010
  • This paper discusses the simulation and LI(light impulse) test of the shieldless vacuum interrupter concept. The shields of vacuum interrupter play an important role in absorbing the metal vapor. But shield distort the electric field distribution of inner vacuum interrupter. Therefore, the insulation efficiency will improve. if shield of vacuum interrupter inside does not exist. As a result, FEM simulation show that improve distribution of electrical field and equi-potential line. But LI test result dissimilar to FEM simulation result. Shieldless vacuum interrupter model lower BIL(breakdown impulse light) than vacuum interrupter have installed shield. Because conditioning process occurred metal vapor. This paper compared that FEM analysis and LI test of installed shield model and shieldless model.

  • PDF

Two-dimensional numerical simulation study on the nanowire-based logic circuits (나노선 기반 논리 회로의 이차원 시뮬레이션 연구)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.82-82
    • /
    • 2008
  • One-dimensional (1D) nanowires have been received much attention due to their potential for applications in various field. Recently some logic applications fabricated on various nanowires, such as ZnO, CdS, Si, are reported. These logic circuits, which consist of two- or three field effect transistors(FETs), are basic components of computation machine such as central process unit (CPU). FETs fabricated on nanowire generally have surrounded shapes of gate structure, which improve the device performance. Highly integrated circuits can also be achieved by fabricating on nano-scaled nanowires. But the numerical and SPICE simulation about the logic circuitry have never been reported and analyses of detailed parameters related to performance, such as channel doping, gate shapes, souce/drain contact and etc., were strongly needed. In our study, NAND and NOT logic circuits were simulated and characterized using 2- and 3-dimensional numerical simulation (SILVACO ATLAS) and built-in spice module(mixed mode).

  • PDF

Analysis of the OLEDs Characteristics using Simulation (시뮬레이션을 이용한 유기발광다이오드 특성 해석)

  • Park, Young-Ha;Kim, Weon-Jong;Sin, Hyun-Taek;Cho, Kyung-Soon;Kim, Gwi-Yeol;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.46-47
    • /
    • 2008
  • Organic light-emitting diode is quick response speed, low power consumption and the self-interest has many advantages, such as insanity. So, organic light-emitting diode mechanism of light-emitting diode in order to more clearly understand the changes in the thickness of emitting materials for OLED characteristics of the simulation. emitting layer to a thickness of 10 [nm] ~ 100 [nm] changed the experiment, and hole transport layer 190 [nm] as a fixed. and emitting layer 10 [nm] ~ 100 [nm] to change the simulation results. Changes in the thickness of emitting layer gradually increased. depending on the emitting was 20 [nm] in the high 441 [lm / W] shows. and was gradually reduced. emitting layer 190 [nm] when fixed, hole transport layer, depending on changes in the thickness of 70 [nm] in the efficiency maximum value of 477 [lm / W], and was gradually reduced.

  • PDF

Analysis of the High Pressure Die Casting Process by Computer Simulation (수치해석에 의한 고압다이캐스팅용 금형설계 및 주조공정해석)

  • Lee, Chang-Ho;Choi, Jae-Kwon;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.400-406
    • /
    • 2000
  • Computer simulation for the predictions of casting defects is very important to produce high quality castings with less cost. Complicate shaped Al solenoid housing part was selected to be cold chamber die cast and a numerical simulation technique was applied for the optimization of the chill vent position and gating. A first design led to insufficient central flow. This flow left the last filled areas falling into the inner portion of the part. And last filled area did not fit the chill vent position. So these resulted in a high possibility of air entrapment in the casting and the design was not proper for the part. The design was improved by using a proper gating system, a more chill vent and proper overflow positions. New design provided a homogenous mold filling pattern and the last filled areas that being located at the overflow and chill vent. Casting plan which produce good quality solenoid housing part was established by using the computer simulation.

  • PDF

Development of a Real-time Simulation Method for the Utility Application of Superconducting power Devices (PART 1 : HIS Power Cable) (초전도 전력기기의 계통적용을 위한 실시간 시뮬레이션 기법 개발 (PART 1 : 고온초전도 전력 케이블))

  • Kim, Jae-Ho;Park, Min-Won;Park, Dae-Jin;Kang, Jin-Ju;Cho, Jeon-Wook;Sim, Ki-Deok;Yu, In-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1055-1060
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Since HTS power cable is capable of the high current density delivery with low power loss, the cable size can be compact comparing with the conventional cable whose capacity is same. In this paper, the authors propose the real time simulation method which puts a teal HTS wire into the simulated 22.9 kV utility grid system using Real Time Digital Simulator (RTDS). For the simulation analysis, test sample of HTS wire was actually manufactured. And the transient phenomenon of the HTS wire was analyzed in the simulated utility power grid. This simulation method is the world first trial in order to obtain much better data for installation of HTS power device into utility network.