• Title/Summary/Keyword: Material separation

Search Result 837, Processing Time 0.032 seconds

Optimum process conditions for supercritical fluid and co-solvents process for the etching, rinsing and drying of MEMS-wafers (초임계 유체와 공용매를 이용한 미세전자기계시스템 웨이퍼의 식각, 세정을 위한 최적공정조건)

  • Noh, Seong Rae;You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • This study aims to select suitable co-solvents and to obtain optimal process conditions in order to improve process efficiency and productivity through experimental results obtained under various experimental conditions for the etching and rinsing process using liquid carbon dioxide and supercritical carbon dioxide. Acetone was confirmed to be effective through basic experiments and used as the etching solution for MEMS-wafer etching in this study. In the case of using liquid carbon dioxide as the solvent and acetone as the etching solution, these two components were not mixed well and showed a phase separation. Liquid carbon dioxide in the lower layer interfered with contact between acetone and Mems-wafer during etching, and the results after rinsing and drying were not good. Based on the results obtained under various experimental conditions, the optimum process for treating MEMS-wafer using supercritical CO2 as the solvent, acetone as the etching solution, and methanol as the rinsing solution was set up, and MEMS-wafer without stiction can be obtained by continuous etching, rinsing and drying process. In addition, the amount of the etching solution (acetone) and the cleaning liquid (methanol) compared to the initial experimental values can be greatly reduced through optimization of process conditions.

  • PDF

Electrochemical Properties of SiOx Anodes with Conductive Agents for Li Ion Batteries (도전재 종류에 따른 리튬이차전지 음극재 SiOx의 전기화학적 특성)

  • Yun, Ji-Su;Jang, Boyun;Kim, Sung-Soo;Kim, Hyang-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.179-186
    • /
    • 2019
  • This work investigated the effects of different conductive agents on the electrochemical properties of anodes. SiOx possesses high theoretical capacity and shows excellent cycle performance; however, the low initial coulombic efficiency and poor electrical conductivity limit its applications in real batteries. In this study, electrodes were fabricated using two different conductive agents, and the resulting physical and electrochemical properties were analyzed. SEM observations confirmed the formation of a CNT conductive network throughout the electrodes, while the electrical conductivity contributed to the electrode was confirmed by impedance measurements. Thus, the electrode fabricated with the CNT conductive agent showed greater capacity and superior cycle performance than did the electrode fabricated using the DB conductive agent.

Water-Sloshing-Based Electricity Generating Device via Charge Separation and Accumulation (전하 분리와 축적을 통한 물의 슬로싱 현상 기반 전기에너지 발생 장치)

  • Cha, Kyunghwan;Heo, Deokjae;Lee, Sangmin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.98-101
    • /
    • 2022
  • Liquid-based Triboelectric nanogenerator (L-TENG) is one of the alternatives to solid-based Triboelectric nanogenerator (S-TENG) because of the absence of surface damage which can decrease the durability of the generator. However, the L-TENG also has an obvious drawback of significantly lower output than that of S-TENG. This article produces water-sloshing-based electricity generating device (W-ED) with a new design of L-TENG that improves electrical output in portable form. The dual-electrode system, consisting of closed-loop circuit and inner electrode which enables water to contact directly in the bottle, can generate the open-circuit voltage and the short-circuit current of up to 348 V and 5.1 mA, respectively. By investigating the motion of water for each frequency, we propose that W-ED is suitable device for a variety of human motions. We expect that W-ED can be applied in small electrical devices or sensors in daily-use items.

Based on morphology and molecular data, Palisada rigida comb. nov. and Laurencia decussata comb. et stat. nov. (Rhodophyta, Rhodomelaceae) are proposed

  • Metti, Yola
    • ALGAE
    • /
    • v.37 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • Inspecting herbaria collections of Laurencia rigida highlighted frequent misidentifications between L. rigida and L. heteroclada f. decussata, two poorly studied taxa from Australia. Recent collections of DNA material, including from topotype material, allowed for re-examination of these two taxa using molecular techniques. Detailed morphological and molecular analyses based on two markers (rbcL and COI-5P) strongly supported these two taxa as being distinct from each other and requiring nomenclatural changes. Comprehensive morphological analyses highlighted features useful for accurate identifications. Interestingly, L. rigida was found to belong to the genus Palisada with evidence from both the morphology and molecular data. Therefore, this study proposed recognizing L. rigida as Palisada rigida comb. nov. Molecular data for L. heteroclada f. decussata on the other hand supported its separation from L. heteroclada, with too great a molecular distance to be considered a variety. Morphological characters that best separated P. rigida from L. decussata included seven characters; number of pericentral cells per vegetative axial segment, the presence of secondary pit connections, the presence of lenticular thickenings, tetrasporangia alignment, the presence of corps en cerise, holdfast morphology, and overall plant shape. Morphologically, L. heteroclada f. decussata was also separated from L. heteroclada, particularly by the following characteristics; ultimate branchlets morphologies, lower order branch lengths, primary axis and holdfast morphologies. Therefore, it was proposed that L. heteroclada f. decussata is recognized at a species level as L. decussata comb. et stat. nov.

Development of Cosmetic Packaging for Cream Formulation with Easy Separation and Discharge (분리배출이 용이한 크림제형용 화장품 패키징 개발)

  • Sang Kyu Ryu;Ho Sang Kang;Jae Young Oh
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2023
  • The cosmetics industry faces a significant challenge in addressing the decreased recycling rate of cosmetic containers due to the composite materials used to meet consumers' aesthetic satisfaction. To address thees issues, eco-friendly packaging solutions such as refill packaging and single-material use have been developed. However, the market for eco-friendly cosmetics packaging requires a product that meets consumers' demands for aesthetics, sensitivity, and eco-friendliness while also performing as well as existing products. This study presents a solution to the challenge of the decreased recycling rate of cosmetic containers by developing a new cosmetic packaging product for cream formulations. The product features an easily separable and dischargeable internal refill container, while maintaining the design aesthetics of the external container. Through various tests, the product was shown to be of equivalent quality and performance to existing cream cosmetic packaging, with no leakage or defects observed. Furthermore, the use of a single-material polypropylene refill container is expected to contribute to the improvement of the plastic recycling rate.

Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches

  • Soltanieh, Ghazaleh;Yam, Michael CH.;Zhang, Jing-Zhou;Ke, Ke
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • Layer separation (delamination) is an essential threat to fiber-reinforced polymer (FRP) plates under dynamic, static, and fatigue loads. Under compressive load, the growth of delamination will lead to structural instability. The aim of this paper is to present a method using shape memory alloy (SMA) stitches to suppress the delamination growth in a FRP plate and to improve the buckling behavior of the plate with a rectangular hole. The present paper is divided into two parts. Firstly, a closed-form (CF) formulation for evaluating the buckling load of the FRP plate is presented. Secondly, the finite element method (FEM) will be employed to calculate the buckling loads of the plates which serves to validate the results obtained from the closed-form method. The novelty of this work is the development of the closed-form solution using the p-Ritz energy approach regarding the stress-dependent phase transformation of SMA to trace the equilibrium path. For the FEM, the Lagoudas constitutive model of the SMA material is implemented in FORTRAN programming language using a user material subroutines (VUMAT). The model is simulated in ABAQUS/Explicit solver due to the nature of the loading type. The cohesive zone model (CZM) is applied to simulate the delamination growth.

Chaotic phenomena in the organic solar cell under the impact of small particles

  • Jing, Pan;Zhe, Jia;Guanghua, Zhang
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.15-31
    • /
    • 2023
  • Organic solar cells utilized natural polymers to convert solar energy to electricity. The demands for green energy production and less disposal of toxic materials make them one of the interesting candidates for replacing conventional solar cells. However, the different aspects of their properties including mechanical strength and stability are not well recognized. Therefore, in the present study, we aim to explore the chaotic responses of these organic solar cells. In doing so, a specific type of organic solar cell constructed from layers of material with different thicknesses is considered to obtain vibrational and chaotic responses under different boundaries and initial conditions. A square plate structure is examined with first-order shear deformation theory to acquire the displacement field in the laminated structure. The bounding between different layers is considered to be perfect with no sliding and separation. On the other hand, nonlocal elasticity theory is engaged in incorporating the structural effects of the organic material into calculations. Hamilton's principle is adopted to obtain governing equations with regard to boundary conditions and mechanical loadings. The extracted equations of motion were solved using the perturbation method and differential quadrature approach. The results demonstrated the significant effect of relative glass layer thickness on the chaotic behavior of the structure with higher relative thickness leading to less chaotic responses. Moreover, a comprehensive parameter study is presented to examine the effects of nonlocality and relative thicknesses on the natural frequency of square organic solar cell structure.

Study on Material Segregation of Grout and Filling Characteristic of Grouting for Post-Tensioned Concrete Beam (PC 그라우트의 재료분리 및 PC 빔 그라우팅 충전성에 관한 연구)

  • Lee, Jun-Ki;Choi, Joon-Ho;Yoon, Jeong-Seob;Cho, In-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.419-426
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In presstressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing the prestress tendons using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by tendons in the ducts, and furthermore current standard testing method does not quantify reasonable material segregation. As a result, the grout material, which satisfies the current material standards, may well exhibit excessive bleeding of water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The mix proportions of the constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared with common domestic grouts using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

Effects of Conductive Material on $LiCoO_2$ Cathode for the Lithium ion Battery (리튬이온전지용 $LiCoO_2$ 정극의 도전재료에 따른 특성)

  • Coh Chil Hoon;Moon Seong In;Hyung Yoo Eup;Yun Mun Soo;Park Chun Jun;Yun Duk Hyun;Yun Suong Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.88-92
    • /
    • 1999
  • The apparent density. self-separation of the electrode composite from current collector in the electrolyte solution and specific resistance of electronic conduction of the electrode composite were examined by the variation of content of conductive material such as graphitic and black carbons in $LiCoO_2$ composite electrode for lithium ion battery. Increasing the content of conductive material, the apparent density of Lico02 composite electrode was decreased and that of $LiCoO_2$ in composite electrode was only rapidly decreased compared to that of composite. $LiCoO_2$ composite electrodes containing more than 4.1 weight percent of super s black as a conductive material were seU-separated by the immersion into 1 mol/I $LiPF_6$ in propylene carbonate and diethyl carbonate (1:1 volume ratio). Specific resistances related to the electronic conduction of composite electrode were decreased by the increasing the content i)f conductive material. Specific resistance of the composite electrode including $2\~3\%w/w$ of super s black as conductive material was similar to that of $12\%w/w$ of Lonza KS6. In the range of this study, super s black as conductive material is better than Lonza KS6 on battery capacity because of apparent density of $LiCoO_2$ in electrode composite including super s black is higher than that of Lonza KS6.

Numerical Study of Heat Transfer Enhancement on Microchannel Plate Heat Exchanger with Channel Shape (채널 형상에 따른 마이크로채널 판형 열교환기 열전달 성능 향상에 관한 수치 연구)

  • Jeon, Seung-Won;Kim, Yoon-Ho;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1888-1893
    • /
    • 2007
  • In this study, the microchannel plated heat exchanger were numerically studied for the enhancement of heat transfer in the channel configuration. Unit cold and hot fluid region with the microchannel were modeled and periodic boundary condition at the side wall was applied to continuously repeating geometry. The material of micro-structured plate is STS304 and working fluid is water. Triangular obstacles were placed in micro channel to enhance heat transfer. The performance of microchannel plated heat exchangers were numerically investigated with various obstacle configuration and Reynolds number under the parallel and counter flows. Heat transfer rate has increased about 18% compared with straight channel, but pressure drop also increased about 3.5 times. The main factor of increasing of pressure drop and heat transfer rate is considered that the momentum was lost to collide against obstacles, generation of secondary flow and boundary layer separation, wake and vortex forming phenomena.

  • PDF