• Title/Summary/Keyword: Material separation

Search Result 837, Processing Time 0.031 seconds

A Study on the Finite Element Analysis of Tire under Rolling and Loading Conditions (회전 및 하중을 받는 타이어의 응력해석에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.101-109
    • /
    • 1995
  • Axisymmetric and quasi-static finite element analysis of an inflated tire rotating with constant angular velocity and contact to road has been performed. Centrifugal force effect was added to load stiffness matrix and equation of effective material properties were calculated by the Halpin-Tsai formulation. In this report, radial truck/bus tire was analyzed. It was inflated and rotated at speeds up to 140 km/h. Then, contact problem was performed to calculate stress-strain field of tire wiht flat rigid road under the load due to the self-weight of a vehicle. Significant changes of stress-strain field of tire were observed in the finite element analysis. Shear stress, strain and strain energy density were rapidly increased at the dege of #2 belt at freely rotating state. This concentrated stress and strain made belt edge sparation. Under the condition of flat riged road contact, strain energy density of #2 belt, carcass turn-up part were concentrated and bigger values than only freely rotation state. Therefore, dynamic behaivor of tire has to considered as design factors which are affected to belt edge separation and bead breakage.

  • PDF

Current Status and Perspectives of Graphene-based Membranes for Gas Separation (그래핀 기반 기체 분리막의 연구동향 및 전망)

  • Yoo, Byung Min;Park, Ho Bum
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.216-225
    • /
    • 2017
  • Since the experimental proof of one-atom-thick graphene single layer from graphite in 2004, graphene, as a leading material opening two-dimensional world, has been tremendously investigated owing to its intrinsic extraordinary physical properties. Among many promising graphene applications, it is believed that membranes might be one of the first significant applications for graphene and its derivatives (e.g., graphene oxide). Recently, a number of simulation results and proof-of-concept experimental approaches towards graphene membranes reflect such positive prospects. Moreover, graphene and graphene oxide already show many outstanding intrinsic properties suitable for promising membrane platforms, such as the minimum membrane thickness, excellent mechanical strength, high chemical and thermal stability, and the ability to generate nanopores in the two-dimensional, rigid hexagonal lattices or to create slit-like nanochannels between adjacent sheets. In this paper, important theoretical and experimental developments in graphene or graphene oxide-based membranes for gas separation based on intrinsic properties of graphene and its derivatives will be discussed, emphasizing on transport behavior, membrane formation methods, and challenging issues for actual membrane applications.

자발적 상분리법과 수열합성법을 이용한 ZnO계 일차원 나노구조의 수직 합성법 연구

  • Jo, Hyeong-Gyun;Kim, Dong-Chan;Bae, Yeong-Suk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.5.2-5.2
    • /
    • 2009
  • From 10 years ago, the development of nano-devices endeavored to achieve reconstruction of information technology (IT) and nano technology (NT) industry. Among the many materials for the IT and NT industry, zinc oxide (ZnO) is a very promising candidate material for the research of nano-device development. Nano-structures of ZnO-based materials were grown easily via various methods and it attracts huge attention because of their superior electrical and optical properties for optoelectronic devices. Recently, among the various growth methods, MOCVD has attracted considerable attention because it is suitable process with benefits such as large area growth, vertical alignment, and accurate doping for nano-device fabrication. However, ZnO based nanowires grown by MOCVD process were had the principal problems of 1st interfacial layers between substrate and nanowire, 2nd a broad diameter (about 100 nm), and 3rd high density, and 4th critical evaporation temperature of Zinc precursors. In particular, the growth of high performance nanowire for high efficiency nano-devices must be formed at high temperature growth, but zinc precursors were evaporated at high temperature.These problems should be repaired for materialization of ultra high performance quantum devices with quantum effect. For this reason, we firstly proposed the growth method of vertical aligned slim MgZnO nanowires (< 10 nm) without interfacial layers using self-phase separation by introduced Mg at critical evaporation temperature of Zinc precursors ($500^{\circ}C$). Here, the self-phase separation was reported that MgO-rich and the ZnO-rich phases were spontaneously formed by additionally introduced Mg precursors. In the growth of nanowires, the nanowires were only grown on the wurzite single crystal seeds as ZnO-rich phases with relatively low Mg composition (~36 at %). In this study, we investigated the microstructural behaviors of self-phase separation with increasing the Mg fluxes in the growth of MZO NWs, in order to secure drastic control engineering of density,diameter, and shape of nanowires.

  • PDF

Pervaporation Separation of Isopropyl Alcohol-water Mixtures Using Poly (dimethyl siloxane) Membrane (PDMS 막을 이용한 물과 이소프로판올 혼합액의 투과증발 분리특성)

  • Kim, Ji Seon;Lee, Choong Sub;Cho, Eun Hye;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2013
  • In this study, the pervaporation separation characteristics were investigated for the iso-propyl alcohol (IPA)-water system using PDMS dense membranes. The ratio, 9:1 and 10:1, of the basic material based on RTV-655 and crosslinking agent were used to prepare dense membranes at the reaction temperatures, 40, 60, and $80^{\circ}C$. And these resulting membranes were characterized by pervaporation technique in terms of permeabilities and separation factors for the feed composition of IPA 85 wt% at the operating temperatures, 25, 35, 45, and $55^{\circ}C$. Typical results of permeabilities $148g/m^2{\cdot}hr$ at $55^{\circ}C$ for 9:1 membrane and the selectivity 17 at $55^{\circ}C$ for 10:1 membrane were obtained, respectively.

Preparation of Cucurbituril Anchored Silica Gel by Cross Polymerization and Its Chromatographic Applications

  • Cheong, Won-Jo;Go, Joung-Ho;Baik, Yoon-Suk;Kim, Sung-Soon;Nagarajan, Erumaipatty R;Selvapalam, Narayanan;Ko, Young-Ho;Kim, Ki-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1941-1945
    • /
    • 2008
  • A new chromatographic stationary phase has been prepared by cross polymerization between allylsilica and perallyloxycucurbit[6]uril and characterized by elemental analysis and FT-IR spectroscopy. The double endcapping has been proven to improve the separation efficiency of the cucurbituril-based stationary phase material. The first end-capping was carried out when allylsilica was made. The second end-capping was done as the final step of the whole process, and the use of a mixture of hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS) as an end-capping reagent was found better than the use of only HMDS or TMCS. Our stationary phase has shown generally good results in separation of nonpolar and polar analytes. This phase showed even better separation performance than the commercial C18 phase for the case where hostguest chemistry was properly incorporated in solute retention.

Separation and Recovery of Indole from Model Coal Tar Fraction by Batch Cocurrent 5 Stages Equilibrium Extraction (회분 병류 5단 평형추출에 의한 모델 콜타르 유분 중에 함유된 Indole의 분리 및 회수)

  • Kim, Su Jin;Chun, Yong Jin;Jeong, Hwa Jin
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.168-172
    • /
    • 2007
  • The separation of indole from a model mixture comprising four kinds of nitrogen heterocyclic compounds [indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)], three kinds of bicyclic aromatic compounds [1-methylnaphthalene (1MN), 2-methylnaphthalene (2MN), dimethylnaphthalene (DMN)], biphenyl (Bp) and phenyl ether (Pe) was examined by batch cocurrent 4 stages equilibrium extraction. The model mixture used as a raw material in this work was prepared according to the components and compositions contained in coal tar fraction (the temperature ranges of fraction: $240{\sim}265^{\circ}C$). An aqueous solution of formamide was used as a solvent. Indole was recovered more than 99% through 4 stages of the equilibrium extraction. The range of selectivity of indole in reference to DMN obtained through the 5 stages equilibrium extraction was found to be 63~118. The process for separation and recovery of indole contained in coal tar was studied by using the experimental results obtained from this work and the previous work.

Peptic Hydrolysate of Porcine Crude Myosin Has Many Active Fractions Inhibiting Angiotensin I-converting Enzyme

  • Katayama, Kazunori;Fuchu, Hidetaka;Sugiyama, Masaaki;Kawahara, Satoshi;Yamauchi, Kiyoshi;Kawamura, Yukio;Muguruma, Michio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1384-1389
    • /
    • 2003
  • In order to clarify one of the biological functions of pork, we investigated whether a peptic hydrolysate of denatured porcine crude myosin showed inhibitory activity against angiotensin I-converting enzyme (ACE), which contributed to hypertension. Our results indicated that this hydrolysate showed relatively strong activity, and we therefore attempted to separate the involved peptides, which were considered to be active substances. To isolate these active peptides, the hydrolysate was separated using a solidphase separation, gel filtration high-performance liquid chromatography (HPLC), and two kinds of reverse phase HPLC. In each stage of separation, many fractions were detected, almost all of which showed ACE inhibitory activity. Thus, we suggested that the activity of the hydrolysate as a whole was a result of the activities of the many individual peptides. Six peaks were distinguished, with yields from 34 to 596 ppm of original crude myosin. In addition to the six peaks, many other active fractions were found throughout the separation steps, strongly suggesting that whole porcine crude myosin itself had ACE inhibitory activity. Moreover, pork as food was considered to function as an ACE inhibitory material in vivo, because pork proteins consist primarily of crude myosin, which included almost all the myofibrillar structural proteins.

The Preparation of Composite Fiber Adsorbents for Separation of Uranium from Seawater by Spinning(1) (방사 방법을 이용한 해수로 부터 우라늄 분리를 위한 복합재료 섬유흡착제의 제조(1))

  • Hwang, Taek-Seong;Hwang, Ui-Hwan;Park, Jeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.966-978
    • /
    • 1995
  • Amidoximated composite fiber adsorbents were prepared for separation of uranium from seawater and characterized by various instrumental techniques, such as IR spectroscopy, CHN elemetal analyzer and SEM. The swelling ratios and yields of the AN-TEGMA and AN-TEGMA-DVB copolymers were decreased with an increase in crosslinklng agents, such as DVB and TEGMA composition. The yield of 85-92% and 82-88% of AN-TEGMA and AN-TEGMA-DVB copolymers respectively were found. The porosity was also decreased with increase in crosslinking compositions, and it was found that the AN-TEGMA-DVB porosity copolymers were smaller than the value of AN-TEGMA copolymer. We investigated that the adsorbent with the composite fiber adsorbents were well dispersed on the surface of Its by SEM. The optimum contents of containing adsorbent in the copolymer was 40 weight percent. The capacity of uraniyl ion through the composite fiber adsorbent containing the amidoxime group was miximized a pH level of 8. Also, if was found that the synthesized composite fiber adsorbent was good material, due to a pH level of 8.3 of seawater, for separation of uraniyl ion from seawater.

  • PDF

New Technologies for Enhancing Particles Separation Efficiency in Coagulation and Filtration (입자분리효율을 높이기 위한 새로운 기술)

  • Kunio, Ebie;Jang, Il-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.254-269
    • /
    • 2004
  • Polysilicato-iron coagulant (PSI) is receiving attention in Japan as a substitute for aluminum-based coagulants. In the first part of this article, coagulation, sedimentation and filtration experiments were carried out using kaolin clay particles as the turbidizing material and four types of PSI with various molar ratios of polysilicic acid to ferric chloride (Si/Fe ratio). Results demonstrate that use of a PSI with a high Si/Fe ratio can cause a more dramatic decrease in treated water turbidity but a higher suction time ratio (STR) than when PACl is used. However, optimization by increasing the rapid agitation strength GR is found to greatly improve the STR. In addition, the series of filtration experiments verified that optimization of GR is greatly effective in controlling rapid increases in filter head loss, and also formation of a thin aging layer in the upper part of the filter bed by slow-start filtration is effective in improving filtered water turbidity over the entire filtration process. The second part of this article describes two innovative filtration techniques to increase the particle separation efficiency; (1) coagulant-coated filter medium by enhancing the electrical potential of the surface of the filter medium, and (2) coagulant dosing in influent by controlling the electrical potential of particles entering the filter layer. From the results of the various filtration experiments using a pilot plant, these two techniques were found to be very effective to reduce the effluent water turbidity from the start to the end of a filter run. Moreover, in the filtration experiments using these two methods simultaneously, higher removal efficiency of approximately 3-log (99.7%) was realized, resulting that the finished water turbidity was accordingly reduced to 0.004mg/L.

Fabrication and Vibration Characterization of a Partially Etched-type Artificial Basilar Membrane

  • Kang, Hanmi;Jung, Youngdo;Kwak, Jun-Hyuk;Song, Kyungjun;Kong, Seong Ho;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.373-378
    • /
    • 2015
  • The structure of the human ear is divided into the outer ear, the middle ear, and the inner ear. The inner ear includes the cochlea that plays a very important role in hearing. Recently, the development of an artificial cochlear device for the hearing impaired with cochlear damage has been actively researched. Research has been carried out on the biomimetic piezoelectric thin film ABM (Artificial Basilar Membrane) in particular. In an effort to improve the frequency separation performance of the existing piezoelectric thin film ABM, this paper presents the design, fabrication, and characterization of the production and performance of a partially etched-type ABM material. $O_2$ plasma etching equipment was used to partially etch a piezoelectric thin film ABM to make it more flexible. The mechanical-behavior characterization of the manufactured partially etched-type ABM showed that the overall separation frequency range shifted to a lower frequency range more suitable for audible frequency bandwidths and it displayed an improved frequency separation performance. In addition, the maximum magnitude of the vibration displacement at the first local resonant frequency was enhanced by three times from 38 nm to 112 nm. It is expected that the newly designed, partially etched-type ABM will improve the issue of cross-talk between nearby electrodes and that the manufactured partially etched-type ABM will be utilized for next-generation ABM research.