The Preparation of Composite Fiber Adsorbents for Separation of Uranium from Seawater by Spinning(1)

방사 방법을 이용한 해수로 부터 우라늄 분리를 위한 복합재료 섬유흡착제의 제조(1)

  • 황택성 (국립 천안공업전문대학 공업화학과) ;
  • 황의환 (한국과학기술원 화학공학과) ;
  • 박정기 (충남대학교 화학공학과)
  • Published : 1995.12.01

Abstract

Amidoximated composite fiber adsorbents were prepared for separation of uranium from seawater and characterized by various instrumental techniques, such as IR spectroscopy, CHN elemetal analyzer and SEM. The swelling ratios and yields of the AN-TEGMA and AN-TEGMA-DVB copolymers were decreased with an increase in crosslinklng agents, such as DVB and TEGMA composition. The yield of 85-92% and 82-88% of AN-TEGMA and AN-TEGMA-DVB copolymers respectively were found. The porosity was also decreased with increase in crosslinking compositions, and it was found that the AN-TEGMA-DVB porosity copolymers were smaller than the value of AN-TEGMA copolymer. We investigated that the adsorbent with the composite fiber adsorbents were well dispersed on the surface of Its by SEM. The optimum contents of containing adsorbent in the copolymer was 40 weight percent. The capacity of uraniyl ion through the composite fiber adsorbent containing the amidoxime group was miximized a pH level of 8. Also, if was found that the synthesized composite fiber adsorbent was good material, due to a pH level of 8.3 of seawater, for separation of uraniyl ion from seawater.

해수로 부터 우라늄 분리를 위한 아미드옥심형 섬유복합재료 흡착제를 제조하였고, IR, 팽윤도 실험, CHN 원소분석, SEM 및 흡착능 실험을 통하여 그 특성을 알아보았다. AN-TEGMA 및 AN-TEGMA-DVB 공중합체의 팽윤율과 수율은 가교제의 함량이 증가할 수록 감소하였으며, 수율은 AN-TEGMA 공중합체의 경우 85-92%였고 AN-TEGMA-DVB 공중합체는 82-88%였다. 다공도도가교체의 함량이 증가할 수록 감소하였으며 AN-TEGMA-DVB 공중합체가 AN-TEGMA 공중합체보다 작았다. 또한 전자현미경 관찰 결과 제조한 섬유 복합재료 흡착제의 표면에 흡착제가 고루 분포되어 있는 것을 확인하였고, 흡착제의 최적 첨가량은 40wt%이었다. 섬유복합재료 흡착제의 우라늄 흡착량은 pH 8 부근에서 최대 였으며, 해수의 pH가 8.3임을 감안할 때 해수 우라늄 분리에 적합한 소재 임을 알 수 있었다.

Keywords

References

  1. Kagaku Kogaku v.45 no.4 F. Nakajima;K. Fujita
  2. Nippon kaisui Gakkaishi v.34 no.187 N. Ogata
  3. Nippon kaisui Gakkaishi v.35 no.195 N. Ogata
  4. Shikoku Kokenkai Ho v.34 M. Kanno
  5. Kagaku Kogaku v.48 no.1 M. Kanno
  6. 148 MIT-EL 80-031 M. Kanno;Ken Saito
  7. Reactive Polym. v.7 V.S. Soldatov;A.A. Shunkevich;G.I. Serrev
  8. Polym. Sci. USSR v.29 no.2 N.V. Shevlyakova;M.G. Yakova;N. N. Luzina;V.I. Semonow;R.R. Shifrina
  9. Inst. of Phys,Org. Chem. USSR v.61 no.1 V.S. Soldatov;G.I. Sereev
  10. J. of Appl. Polym. Sci. v.29 T. Maekawa;H. Nishide;E. Tsuchida
  11. Bull. Chem. Soc. JPN v.53 H. Yamasita;Y. Ozawa;F. Nakazima;T. Murata
  12. Composite adsorbent molding for extn. of chromium and uranium from waters Iwaisako;Toshiyuki;Inoue;Akio
  13. JP.81,126,445 Uranium adsorbent resin. Mitsubishi Chemical Industries Co.
  14. JP.82,174,426 Recovery of uranium from seawater Unitika Ltd.
  15. J. Appl. Polym, Sci. v.33 H. Egawa;M. Nakayama;T. Nonaka;E. Sugihara
  16. Sep. Sci. and Technol. v.20 no.28 H. Omichi;A. Katakai;T. Sugo;J. Okamoto
  17. J. Mem, Sci. v.34 K. Saito;S. Yamada;S. Furusakl;T. Sugo;J. Okamoto
  18. Sep. Sci. and Technol. v.16 no.9 K. Sugasaka;S. Katoh(et al.)
  19. Sep. Sci. & Technol. v.23 no.1 T. Hori;S. Saito;S. Furusaki;T. Sugo;J. Okamoto
  20. Sep. Sci. and Technol. v.18 no.4 L. Astheimer;H. J. Schenk;E.G. Witte;K. Schwochanu
  21. Ind. Engr. Chem. Res. v.27 Y. Kobuke;I. Tabushi;T. Aoki
  22. J. Nucl. Sci Technol. v.19 no.2 K. Satio;T. Miyauchi