• Title/Summary/Keyword: Material information

Search Result 5,157, Processing Time 0.039 seconds

A Study on the Design and Fabrication for Partial Discharge Measurement in 22.9kV XLPE Power Cable using Planar Patch Sensor (22.9 kV XLPE 전력케이블에서 부분방전 측정을 위한 Planar Patch Sensor 설계 및 제작 연구)

  • Lim, Kwang-Jin;Yang, Sang-Hyun;Kyawsoe, Lwin;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.265-266
    • /
    • 2008
  • The objective of this paper is to effectively detect partial discharges in XLPE power cables. In this field, we have been usually applied several sensors for such partial discharges. This study used a type of beyond compare antenna based on the influence of background noises. Also, we designed a new structure that is able to easily apply in the adhesion of planar patch types for XLPE power cables in measurement sensitiveness elevation. A high frequency simulation tool (CST-MWS) was applied to the antenna used in this study, and it was used to evaluate certain characteristics. We fabricated an antenna using the simulation data obtained from a specific test. After checking the sensitivity of this Planar Patch Sensor in the Lab, it was tested in an actual site. This paper analyzed the data as a part of time and frequency domain using an oscilloscope and spectrum analyzer, respectively.

  • PDF

A Study on the Design and Fabrication for Partial Discharge Measurment in 22.9kV Underground Power Cable using Planar Loop Sensor (22.9kV급 지중전력케이블의 부분방전 측정을 위한 평면루프센서 설계 및 제작 연구)

  • Shin, Dong-Hoon;Lim, Kwang-Jin;Lwin, Kyawsoe;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.210-211
    • /
    • 2007
  • The objective of this paper is to effectively detect partial discharges in underground power cables. In this field, we have been usually applied several sensors for such partial discharges. This study used a type of beyond compare antenna based on the influence of background noises. Also, we designed a new structure that is able to easily apply in the adhesion of planar loop types for underground power cables in measurement sensitiveness elevation. A high frequency simulation tool (CST-MWS) was applied to the antenna used in this study, and it was used to evaluate certain characteristics. We fabricated an antenna using the simulation data obtained from a specific test. After checking the sensitivity of this Planar Loop Sensor in the Lab, it was tested in an actual site. This paper analyzed the data as a part of time and frequency domain using an oscilloscope and spectrum analyzer, respectively.

  • PDF

A Study on the Development and Characteristics of Eco-friendly None Alkaline Silica Sol Grouting Material (친환경 비알칼리성 실리카졸 지반주입재의 개발과 특성에 관한 연구)

  • Hyunsang Kang;Daeseouk Chung
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.747-756
    • /
    • 2023
  • Purpose: In this study, a grout material mixed using non-alkaline silica-based materials, which is an eco-friendly injection material to stabilize ground, is investigated to improve conventional problems. Method: The homogel specimens of Eco-Friendly Non-Alkaline Silica Sol (ENASS) and L.W. and S.G.R., representative silicate grouting are manufactured. Physicochemical and engineering properties of the specimens are evaluated in laboratory with uniaxial compression strength, hydraulic conductivity, shrinkage, chemical resistance, elution, fish poison, waste leaching. Result: Laboratory test results show that the ENASS was superior in all aspects compared to the existing injection matirial. The suitability of the grout material with ENASS is investigated with filed tests. Conclusion: The results of laboratory and field tests demonstrates that the grout material with ENASS is eco-friendly material that increases the strength, decreases the permeability, and discharges pollutants without leaching.

A Study on the Technical Contents for BIM Design Support (BIM 설계지원 기술콘텐츠 구축에 관한 연구)

  • Cho, Hyunjung;Jang, Jinseok;Kim, Yeonsoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.114-123
    • /
    • 2015
  • The BIM libraries and technical contents in order to develop common technical standards that reflect the contents for a BIM design support should be based. It is essential to redress the technological burden on design office requirements. The technical contents consisted of Material Information, Standard Details and Cost Information are made by system of standard classification. By connecting BIM libraries with each of information including the contents, it derives the consistent BIM data application through the integrated model. In addition, we look forward to introducing and applying BIM more easily through securing common technical contents which remove the pressure of engineering developments of each individual architectural design office and prevent overlapping investments.

A Design of 2.5kV Power IGBT for High Power (2.5kV급 Power IGBT 소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Ann, Byoung-Sup;Nam, Tae-Jin;Kim, Bum-June;Lee, Young-Hon;Chung, Hun-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.143-143
    • /
    • 2009
  • 본 논문은 2500V급 planar type의 NPT(Nun-Punch Through)형 IGBT설계 및 제작에 앞서 IGBT(Insulated Gate Bipolar Transistor)소자가 갖는 구조적 변수가 전기적 특성 (Breakdown Voltage, Turnoff Time, Saturation Voltage, 등)결과에 미치는 영향을 분석하여 IGBT 소자가 갖는 구조적 손실을 최적화 하는데 목표를 두었다. 최적화의 진행은 공정 시뮬레이터인 Tsuprem4와 디바이스 분석 시뮬레이터인 MEDICI를 이용하여 소자가 갖는 각각의 parameter값이 전기적 특성에 미치는 영향을 분석함으로 진행 되어졌으며, 향후 고속철 등과 같은 대용량 산업에 기여할 것으로 판단된다.

  • PDF

Determination of Deterioration and Damage of Porcelain Insulators in Power Transmission Line Through Mechanical Analysis (기계적 분석을 통한 송전용 자기 애자의 열화 판단 및 파손 부위에 대한 연구)

  • Son, Ju-Am;Choi, In-Hyuk;Koo, Ja-Bin;Kim, Taeyong;Jeon, Seongho;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.50-55
    • /
    • 2020
  • Porcelain insulators have been used for a long time in 154 kV power transmission lines. They are likely to be exposed to sudden failure because of product deterioration. This study was conducted to evaluate the quality of porcelain insulators. After stresses were applied, the damaged regions of aged insulators were investigated in terms of chemical composition, material structure, and other properties. For porcelain insulators that were in service for a long time, the mechanical failure load was 126 kN, whereas the average mechanical failure load was 167.3 kN for new products. It was also determined that corrosion occurred at the metal pin part due to the penetration of moisture into the gap between the pin and the ceramic. Statistical analyses of failure were performed to identify the portion of the insulators that were broken. Cristobalite porcelain insulators fabricated without alumina additives had a high failure rate of 54% for the porcelain component. In the case of the addition of Alumina (Al2O3) to the porcelain insulators to improve the strength of the ceramic component, a more frequent damage rate of the cap and pin of 73.3% and 27%, respectively, was observed. This study reports on the material component of SiO2 and the percentage of alumina added, with respect to the mechanical properties of porcelain insulators.

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

Development of Ceramics Material Property Database (세라믹 재료물성 데이터베이스 개발)

  • 이정구;이상호;김창규;김지영;김태중
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • Prompt and efficient information collection on each research area is emerging as the key factor of national technology competitiveness in industrialized society. Accordingly, constructing a variety of specialized DBs as the tool for supporting R&D activities and providing appropriate information are essential task to be solved in promoting R&D productivity. On this study, We have developed ceramics material property DB to support and facilitate R&D activities of industry, academia and research institutes. The ceramic property DB which was regarded as the most important DB surveyed from korean done for scientists and researchers was selected. To develop this DB, us have designed DB customized for domestic users after analyzing items and structures of ceramic material property information. We hope that R&D researchers can save time and cost in acquiring property information and the R&D productivity will be improved by utilizing our research result.

  • PDF

Developed Compact Injection Molding Machine for Desktop (탁상용 소형 사출 성형기 개발)

  • Lee, Byung-Ho;Shin, Dong-Hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.257-263
    • /
    • 2018
  • It is a small injection molding machine for table top considering the material heating mechanism and the design and structure stability by securing the mechanism that compresses the inside of the material heating tube by using the electric actuator and by providing space between the body and the material heating tube to reduce heat loss Develop body. An electric actuator suitable for applying pressure to the inside of a material heating tube is a mechanical system composed of a rigid structure. Since a large force is repeatedly applied to the electric actuator and the push rod, the interaction between the moving parts and the dynamic Maximum stress through analysis and prediction of fatigue life of critical parts The pushrod reflects the structural analysis results of the electric actuator and the push rod, and pushes the inside of the material heating tube by the push rod to inject the molten material from the nozzle into the mold. The pushrod operates by the operation of the electric actuator. The material heated by the coil heater is ejected through the nozzle by the pressure of the material heating tube, and the material heating tube and the nozzle are also lowered at the same time as the push rod is lowered, so that the material is closely adhered to the mold. We want to study the completion of the injection.

Multicrystalline Silicon Texturing for Large Area CommercialSolar Cell of Low Cost and High Efficiency

  • Dhungel, S.K.;Karunagaran, B.;Kim, Kyung-Hae;Yoo, Jin-Su;SunWoo, H.;Manna, U.;Gangopadhyay, U.;Basu, P.K.;Mangalaraj, D;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.280-284
    • /
    • 2004
  • Multicrystalline silicon wafers were textured in an alkaline bath, basically using sodium hydroxide and in acidic bath, using mainly hydrofluoric acid (HF), nitric acid $(HNO_3)$ and de-ionized water (DIW). Some wafers were also acid polished for the comparative study. Comparison of average reflectance of the samples treated with the new recipe of acidic solution showed average diffuse reflectance less than even 5 percent in the optimized condition. Solar cells were thus fabricated with the samples following the main steps such as phosphorus doping for emitter layer formation, silicon nitride deposition for anti-reflection coating by plasma enhanced chemical vapor deposition (PECVD) and front surface passivation, screen printing metallization, co-firing in rapid thermal processing (RTP) Furnace and laser edge isolation and confirmed >14 % conversion efficiency from the best textured samples. This isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low cost silicon wafers as starting material.

  • PDF