• 제목/요약/키워드: Material dispersion

검색결과 763건 처리시간 0.067초

초음파 분산을 이용한 Epoxy-Organoclay 나노콤포지트 구조적 그리고 유전특성에 관한 연구 (Structural and Dielectric Properties of Epoxy-Organoclay Nanocomposites using Power Ultrasonic Dispersion)

  • 박재준
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1572-1578
    • /
    • 2008
  • The effect of the organoclay_10A nanoparticles on the DSC and Structural and Dielectrics Properties(1Hz-1MHz) for epoxy/Organoclay_10A Nanocomposites has been studied. Dielectric properties of epoxy-Organoclay nanocomposites were investigated at 1, 3, 5, 7, 9 filler concentration by weight. Epoxy nanocomposites samples were prepared with good dispersion of layered silicate using power ultrasonic method in the particles. As structural analysis, the interlayer spacing have decreased with filled nanoparticles contents increase using power ultrasonic dispersion. The maximum increase interlayered spacing was observed to decease for above 5wt% clay loading. The other hand, as decrease with concentration filler of the layered silicate were increased dispersion degree of nanoparticles in the matrix. The interesting dielectric properties for epoxy based nanocomposites systems are attributed to the large volume fraction of interfacesin the bulk of the material and the ensuring interactions between the charged nanoparticle surface and the epoxy chains.

점착성 부유사 이동에 관한 수치모형 (A Numerical Model for Cohesive Suspended Load Movement)

  • 안수한;이상화
    • 물과 미래
    • /
    • 제23권1호
    • /
    • pp.119-127
    • /
    • 1990
  • 점착성 부유사 농도분포는 해수유동과 물질 확산에 의해서 결정되며 지배방정식으로는 2차원 수심적분된 Reynolds운동방정식, 연속방정식과 Fick의 확산법칙에 근거를 둔 대류-확산방정식이 사용되었다. 해수유동과 점성퇴적물 확산인 두개의 모형은 유한차분법을 이용하였고 유동모형은 양해법, 확산모형은 다증법을 사용하여 부유사 이동의 현상을 파악하였다. 해수유동방정식의 적용시 이송항의 포함여부에 대해서 조사하였으며 물질확산 방정식에 대해서는 한계전단응력값의 변화가 부유사농도에 영향을 주는가에 대해서 비교하였다.

  • PDF

H(2,4) 기법을 기반으로 한 저분산 FDTD 기법의 손실 매질의 광대역 해석을 위한 최적화 방법 (Optimization of Extremely Low Numerical-Dispersion FDTD Method Based on H(2,4) Scheme for Wideband Analysis of Lossy Dielectric)

  • 오일영
    • 한국전자파학회논문지
    • /
    • 제29권3호
    • /
    • pp.225-232
    • /
    • 2018
  • 본 논문은 H(2,4) 기법을 기반으로 한 저분산 유한차분 시간영역법(Finite-Difference Time-Domain: FDTD)을 이용하여 상수 도전율과 비유전율을 갖는 유전체의 광대역 전자기 특성을 정확하게 해석하는 방법을 제안했다. 수치분산오차를 최소화하기 위해서 제안한 FDTD 기법에서 이용하는 세 개의 변수의 최적값을 계산하였다. 잘 알려진 정확한 FDTD 기법들과 제안한 FDTD 방법으로 2차원 원형 유전체 실린더의 광대역 산란 문제를 계산하였고, 그 결과를 이론값과 비교하여 제안한 방법의 우수성을 검증하였다.

The influence of the initial stresses on Lamb wave dispersion in pre-stressed PZT/Metal/PZT sandwich plates

  • Kurt, Ilkay;Akbarov, Surkay D.;Sezer, Semih
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.347-378
    • /
    • 2016
  • Within the scope of the plane-strain state, by utilizing the three-dimensional linearized theory of elastic waves in initially stressed piezoelectric and elastic materials, Lamb wave propagation and the influence of the initial stresses on this propagation in a sandwich plate with pre-stressed piezoelectric face and pre-stressed metal elastic core layers are investigated. Dispersion equations are derived for the extensional and flexural Lamb waves and, as a result of numerical solution to these equations, the corresponding dispersion curves for the first (fundamental) and second modes are constructed. Concrete numerical results are obtained for the cases where the face layers' materials are PZT-2 or PZT-6B, but the material of the middle layer is Steel (St) or Aluminum (Al). Sandwich plates PZT-2/St/PZT-2, PZT-2/Al/PZT-2, PZT-6B/St/PZT-6B and PZT-6B/Al/PZT-6B are examined and the influence of the problem parameters such as piezoelectric and dielectric constants, layer thickness ratios and third order elastic constants of the St and Al on the effects of the initial stresses on the wave propagation velocity is studied.

세라믹계 나노분말을 함유한 변압기 절연유의 분산기술 (Dispersion Technique of Ceramic Nanoparticles in Transformer Oil)

  • 송현우;최철;최경식;오제명
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.44-45
    • /
    • 2005
  • Both $Al_2O_3$ and $SiO_2$ nanopowders were ball-milled to break large agglomerates$(500nm\sim10{\mu}m$). To improve the dispersion of ball-milled nanoparticles in transformer oil, surface modification was performed with oleic acid(OA). The modified nanoparticles were examined by the particle size analyzer, electron microscope, Infrared spectroscopy and stability analyser. Particle Size distributions were measured for ball-milled particles, and the results were compared with the size distribution of primary particles. FTIR results indicated that hydrophobicity of modified nanoparticles was due to the chemical reaction between hydroxyl groups of particle surface and oleic acid. The dispersion stability of surface-modified nanoparticles was quite good in transformer oil.

  • PDF

방향 판별 분산간섭계의 최적 분산 조건 연구 (Optimal Dispersion Condition to Distinguish OPD Directions of Spectrally-Resolved Interferometry)

  • 윤영호;김대희;주기남
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.259-264
    • /
    • 2017
  • Spectrally resolved interferometry (SRI) is an attractive technique to measure absolute distances without any moving components. In the spectral interferogram obtained by a spectrometer, the optical path difference (OPD) can simply be extracted from the linear slope of the spectral phase. However, SRI has a fundamental measuring range limitation due to maximum and minimum measurable distances. In addition, SRI cannot distinguish the OPD direction because the spectral interferogram is in the form of a natural sinusoidal function. In this investigation, we describe a direction determining SRI and propose the optimal conditions for determining OPD direction. Spectral phase nonlinearity, caused by a dispersive material, effects OPD direction but deteriorates spectral interferogram visibility. In the experiment, various phase nonlinearities were measured by adjusting the dispersive material (BK7) thickness. We observed the interferogram visibility and the possibility of direction determination. Based on the experimental results, the optimal dispersion conditions are provided to distinguish OPD directions of SRI.

A MICROSTRUCTURAL MODEL OF THE THERMAL CONDUCTIVITY OF DISPERSION TYPE FUELS WITH A FUEL MATRIX INTERACTION LAYER

  • Williams, A.F.;Leitch, B.W.;Wang, N.
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.839-846
    • /
    • 2013
  • This paper describes a finite element model of the microstructure of dispersion type nuclear fuels, which can be used to determine the effective thermal conductivity of the fuels during irradiation. The model simulates a representative region of the fuel as a prism shaped unit cell made of brick elements. The elements within the unit cell are assigned material properties of either the fuel or the matrix depending on position, in such a way as to represent randomly distributed fuel particles with a size distribution similar to that of the as manufactured fuel. By applying an appropriate heat flux across the unit cell it is possible to determine the effective thermal conductivity of the unit cell as a function of the volume fraction of the fuel particles. The presence of a fuel/matrix interaction layer is simulated by the addition of a third set of material properties that are assigned to the finite elements that surround each fuel particle. In this way the effective thermal conductivity of the material may also be determined as a function of the volume fraction of the interaction layer. Work is on going to add fission gas bubbles in the fuel as a fourth phase to the model.

중전기기용 Epoxy/SiO2 나노복합재료의 유전분산 연구 (Study on Dielectric Dispersion of Epoxy/SiO2 Nanocomposites using High Voltage Generator)

  • 안준호;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.348-351
    • /
    • 2007
  • Recently, Nanotechnology becomes a major issue in most part of industries. Nanotechnology is expected to develop various application products due to nano material mired composites is improved physical and electrical properties compared to conventional composites materials. Dielectric and insulation materials need to develop and improve like other field about nanotechnology. In this paper, we reported dielectric dispersion by size(no filler, $1.2{\mu}m$, 500 nm, 10 nm), frequencies(60, 120, 1 kHz), and temperatures($30{\sim}170^{\circ}C$). Dielectric constant of composites materials with filler shows higher than composites materials without filler and increased depending on rising temperatures in low frequency region. It was the effect that nano-filler and impurities in composites contributed to electrical conductivity. And dielectric properties depending on temperatures shows to change in low frequency region dramatically We analyzed interfacial polarization in low frequency region($10^{-2}$ Hz) and oriented polarization in high frequency region($10^{-5{\sim}6}$ Hz) on composites materials.

단순 형상 해양플랜트 내의 수소의 분산 시뮬레이션 (Dispersion Simulation of Hydrogen in Simple-shaped Offshore Plant)

  • 석준;허재경;박종천
    • 한국해양공학회지
    • /
    • 제27권5호
    • /
    • pp.105-114
    • /
    • 2013
  • Lots of orders of special vessels and offshore plants for developing the resources in deepwater have been increased in recent. Because the most of accidents on those structures are caused by fire and explosion, many researchers have been investigated quantitatively to predict the cause and effect of fire and explosion based on both experiments and numerical simulations. The first step of the evaluation procedures leading to fire and explosion is to predict the dispersion of flammable or toxic material, in which the released material mixes with surrounding air and be diluted. In particular turbulent mixing, but density differences due to molecular weight or temperature as well as diffusion will contribute to the mixing. In the present paper, the numerical simulation of hydrogen dispersion inside a simple-shaped offshore structure was performed using a commercial CFD program, ANSYS-CFX. The simulated results for concentration of released hydrogen are compared to those of experiment and other simulation in Jordan et al.(2007). As a result, it is seen that the present simulation results are closer to the experiments than other simulation ones. Also it seems that the hydrogen dispersion is closely related to turbulent mixing and the selection of the turbulence model properly is significantly of importance to the reproduction of dispersion phenomena.