Korean J. Crystallography Vol. 19, No. 1, pp.14~20, 2008

空間群 P6,22를 가진 C56H56Cl6Cr7P4의 絕對構造

金成觀・韓元植・閔庚台・姜相旭・徐日煥*

高麗大學校(世宗 campus) 新素材化學科 *韓國科學技術情報研究院

Absolute Structure of $C_{56}H_{56}Cl_6Cr_2P_4$ with Space Group P6₁22

Sung-Kwan Kim, Won-Sik Han, Kyoung-Tae Min, Sang Ook Kang and Il-Hwan Suh^a

Department of Material Chemistry, Korea University, 208 Seochang, Chochiwon, Chungnam 339-700 Korea ^aKorea Institute of Science and Technology Information, 52-11 Eoeun-dong, Yuseong-gu, Daejeon 305-806, Korea E-mail: ihsuh@korea.ac.kr

抄 錄

Enantiomorphic space group P6122를 가진 C56H56Cl6Cr2P4의 絕對構造가 anomalous dispersion effect를 사용하여 確認되었다.

Abstract

The absolute structure of a compound $C_{56}H_{56}Cl_6Cr_2P_4$ with enantiomorphic space groups P6,22 was confirmed by means of anomalous dispersion effect.

1. Introduction to Enantiomorphic Pair Space Groups P6₁22(178) and 6₅22(179)

1.1. Coordinates of space group P6₁22

Space group P6,22의 6,[001], 2[100] 그리고 2[210] at z = 1/2에 의하여 다음의 equivalent coordinates가 얻어진다.

$$6_{1}[001] = \begin{bmatrix} 1 - 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1/6 \end{bmatrix} \stackrel{\circ}{=} \overline{z} \stackrel{P}{=} \overrightarrow{F} \stackrel{P}{=} \overrightarrow{F} \stackrel{P}{=}$$

의 6개 등가좌표를 얻어지며 (6)

(1)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x-y \\ x \\ z+1/6 \end{bmatrix} = \begin{bmatrix} -y \\ x-y \\ z+1/3 \end{bmatrix} = \begin{bmatrix} -x \\ -y \\ x+1/2 \end{bmatrix}$$

(2)

(4)

(3) (5) $= \begin{bmatrix} -x+y\\ -x\\ z+2/3 \end{bmatrix} = \begin{bmatrix} y\\ -x+y\\ z+5/6 \end{bmatrix} = \begin{bmatrix} x\\ y\\ z \end{bmatrix}$

2[100] =
$$\begin{bmatrix} 1 - 1 & 0 \\ 0 - 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
으로부터 다음의 6개 등가죄
표가 추가된다.

(1) (8)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - y \\ -y \\ -z \end{bmatrix}$$

2[210] at z = 1/12의 transformation matrix

인
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1/6 \end{bmatrix}$$
로부터는 다음같이 동일한

coordinate들이 나온다:

(1) (12) (2) (4)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ x - y \\ -z + 1/6 \end{bmatrix} \begin{bmatrix} -y \\ x - y \\ z + 1/3 \end{bmatrix} = \begin{bmatrix} -y \\ -x \\ -z + 1/2 \end{bmatrix}$$

 (\mathbf{n})

(1)

이상으로 space group P6122(178)의 12개 coordinates가 다음과 같이 모두 유도되었다

(2) -y, x - y, z + 1/3(1) x, y, z(3) -x + y, -x, z + 2/3(4) -x, -y, z + 1/2(5) y, -x + y, z + 5/6(6) x - y, x, z + 1/6(7) y, x, -z + 1/3(8) x - y, -y, -z(9) -x, -x + y, -z + 2/3(10) -y, -x, -z + 5/6(11) -x + y, y, -z + 1/2(12) x, x - y, -z + 1/6

1.2. Coordinates of space group 6₅22

Space group P6,22 의 12 개 coordinates 에 inversion를 취하면 다음과 같다

(1) -x, -y, -z	(2) y , $-x + y$, $-z + 2/3$
(3) $x - y$, x , $-z + 1/3$	(4) $x, y, -z + 1/2$
(5) -y, x - y, -z + 1/6	(6) $-x + y$, $-x$, $-z + 5/6$
(7) -y, -x, z + 2/3	(8) -x + y, y, z
(9) $x, x - y, z - 2/3$	(10) y, x, $z - 5/6$
(11) x - y, -y, z + 1/2	(12) -x, -x + y, z - 1/6

 $-x \equiv X$, $-y \equiv Y$, $-z \equiv Z$ 로 놓아 얻어지는 다음 coordinates는 6,22(179)의 12개의 coordinates이다. (1) X, Y, Z(2) - Y, X - Y, Z + 2/3(3) -X + Y, -X, Z + 1/3 (4) -X, -Y, Z + 1/2(5) Y, -X + Y, Z + 1/6(6) X - Y, X, Z + 5/6(7) *Y*, *X*, -Z + 2/3(8) X - Y, -Y, -Z(9) -X, -X + Y, -Z + 1/3 (10) -Y, -X, -Z + 1/6(11) - X + Y, Y, -Z + 1/2 (12) X, X - Y, -Z + 5/6

따라서 P6122 와 P6522 의 general equivalent coordinates間에는 inversion symmetry의 관계에 있다.

2. Special relations between P6₁22(178) and P6,22(179)

Section 1.1과 1.2에서 증명된 바와 같이 space groups P6,22 와 P6,22 의 general equivalent coordinates 간에는 inversion symmetry 의 관계에 있어 다음관계가 얻어진다.

2.1. Enantiomorphism(거울像 異性質體) of P6₁22 and P6₅22

첫째 이들 두 space groups 의 structure factors 는 서로의 complex conjugate이다.

셋째 anomalous dispersion을 무시할 때 space groups P6₁22 와 P6₃22 의 intensity가 동일하여 Friedel's law가 성립한다.

넷째 Friedel's law가 成立하는 限 分子의 absolute structure는 定할 수가 없어 그 분자는 두 space groups P6,22와 P6,22 모두에게 속할 수 있다.

2.2. Identical reflection condition of $P6_122$ and $P6_522$

상기 두 space groups에서 다음의 동일한 reflection condition이 나온다.

$$F(00l) = \exp 2\pi i l z (1 + \exp 2\pi i l/3)$$

+ $\exp 2\pi i l z / 3$ + $\exp 2\pi i l / 2$
+ $\exp 2\pi i l 5 / 6$ + $\exp 2\pi i l / 6$)
+ $\exp 2\pi i (-z) (\exp 2\pi i l / 3 + 1)$
+ $\exp 2\pi i l / 2 / 3$ + $\exp 2\pi i l 5 / 6$
+ $\exp 2\pi i l / 2$ + $\exp 2\pi i l / 6$)
 $\neq 0$ only when $l = 6n$

3. Previous Work

결정학에는 32개의 point groups가 있고 이들로 부터 유도되는 92개의 centric space groups 와 138 개의 noncentric space groups를 합하여 230개의 space groups가 있다.

138個의 모든 noncentric space groups에 속한 molecules는 그들의 absolute structures를 결정해야 한다.

3.1. Centric space groups 92個

11개의 centric point groups 1, 2/*m*, *mmm*, 4/*m*, 4/*mmm*, $\overline{3}$, $\overline{3}m$, 6/*m*, 6/*mmm*, *m*3, *m*3*m*에서 92개의 centric space groups가 유도된다.

Centric space groups에는 inversion symmetry를 갖는 coordinates ± x, ± y, ± z 가 존재하여 unit cell 에는 D-form과 L-form 이 공존하며 分子內에 anomalous scatterer 가 있어도 항상 Friedel's law *I(hkl) = I(hkl)*가 성립하다.

3.2. Noncentric space groups 138個

21個 noncentric point groups는 rotoinversion symmetry 를 갖는 point groups 와 enantiomorphous point groups 으로 분류되며 이들로부터 138개 space groups가 유도된다.

3.2.1. Rotoinversion symmetry를 갖는 space groups 73個

Rotoinversion symmetry를 갖는 10개의 point groups 4, 42*m*, 6, 6*m*2, 43*m*, *m*, *mm*2, 4*mm*, 3*m*, 6*mm* 에서 73개의 space groups 가 유도되며 rotoinversion symmetry 때문에 unit cell內에 D-form과 L-form 의 structures 가 공존한다. 그러나 여기에는 inversion symmetry에서 얻어지는 coordinates $\pm x$, $\pm y$, $\pm z$ 가 없으므로 SHELX-97⁵) program 으로 refine할 때 command MOVE 1 1 1 -1을 사용하여 atomic coordinates에 inversion symmetry를 조작한 후 refine 하여 Flack parameter³)를 보아 absolute structure를 정해야 한다.

3.2.2. Enantiomorphous space groups

Rotoinversion symmetry가 없는 11개 enantiomorphous point groups 1, 2, 3, 4, 6, 222, 422, 32, 622, 23, 432에서 유도되는 65개 enantiomorphous space groups의 unit cell內에는 D-form 아니면 L-form의 구조가 존재한다.

또한 이 65개 enantiomorphous space groups 중 에는 11개의 pair space groups가 있는데 이들의 coordinates는 서로 inversion symmetry관계에 있어 한 쪽의 structure가 D-form 이면 다른 쪽의 structure는 L-form을 갖는다.

3.3. Absolute structure

Absolute structure 를 결정하기 위하여는 對象 compound가 noncentric space group에 속하며 그 compound內에 anomalous scatterer가 포함되어 있 어 X-ray intensity data에서 Friedel's law가 성립하 지 않아야 한다.

Anomalous dispersion effect를 이용하여 absolute

structure 를 밝히는 이론방법은 이미 확립되었으며¹⁾ Flack parameter *x* value 로 absolute structure 를 판 정할 수 있다³⁾ Choi *et al.* 의 실험에서는 enantiomorhpous pair space groups *P*4₁2₁2(92)와 *P*4₃2₁2(96) 를 구별하였다²⁾

4. Absolute structure of C₅₆H₅₆Cl₆Cr₂P₄

본 시료의 intensity는 SMART single crystal dif-

fractometer³⁾를 이용하여 limiting sphere 의 hemisphere 영역을 측정하였다.

이 intensity data는 reflection condition 00*l*: *l* = 6*n* 을 만족하여 본 시료는 enantiomorphic pair space groups P6₁22(178)와 P6₅22(179) 양쪽에 속 할 수 있음을 알았다.

이 두 space groups는 noncentrosymmetric point group 622(D₆)에 속하므로 anomalous dispersion 이 고려될 때는 이 point group의 symmetry를 만족하

Table 1. Crystallographic data of $C_{56}H_{56}Cl_6Cr_2P_4$ refined with two space groups $P6_122(178)$ and $P6_522(179)$ are the same when $\Delta f' = 0$

Space groups	P6 ₁ 22(178) & P6 ₅ 22(179)
Empirical formula	$C_{56}H_{56}Cl_6Cr_2P_4$
Formula weight	1169.59
Temperature	233(2) K
Wavelength	0.71073 Å
Crystal system	Hexagonal
Unit cell dimensions	$a = 11.0901(6)$ Å $alpha = 90^{\circ}$
	$b = 11.0901(6)$ Å $beta = 90^{\circ}$
	$c = 87.205(9)$ Å gamma = 120°
Volume	9288.4(12) Å ³
Z, Calculated density	6, 1.255 Mg/m^3
Absorption coefficient	0.746 mm^{-1}
F(000)	3612
Crystal size	$0.08 \times 0.07 \times 0.04 \text{ mm}$
Theta range for data collection	1.40 to 28.31°
Limiting indices	$-14 \le h \le 12, -13 \le k \le 14, -102 \le l \le 115$
Reflections collected/unique	67749/4753 [R(int) = 0.2115]
Completeness to theta = 28.31	99.9%
Max. and min. transmission	0.9744 and 0.9427
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	4753/0/312
Goodness-of-fit on F^2	0.920
Final R indices $[I > 2 \text{sigma}(I)]$	R1 = 0.1196, WR2 = 0.2764
R indices (all data)	R1 = 0.1444, WR2 = 0.2929
Absolute structure parameter	10(10)
Extinction coefficient	0.0131(14)
Largest diff. peak and hole	1.223 and -1.276 e. Å ⁻³

Table 2. Comparison of crystallographic data of $C_{56}H_{56}Cl_6Cr_2P_4$ with space groups $P6_122$ and $P6_522$ when $\Delta f' \neq 0$. The same experimental data as in Table 1 are omitted for easy comparison

	P6 ₁ 22	P6 ₅ 22
Data/restraints/parameters	7707/0/312	7707/0/312
Goodness-of-fit on F ²	0.827	0.835
Final R indices [I > 2sigma(I)]	R1 = 0.1114, $wR2 = 0.2598$	R1 = 0.1131, wR2 = 0.2625
R indices (all data)	R1 = 0.1448, WR2 = 0.2828	R1 = 0.1465, WR2 = 0.2856
Absolute structure parameter	0.10(7)	0.89(7)
Extinction coefficient	0.0195(15)	0.0196(15)
Largest diff. peak and hole	1.333 and -1.326 e.Å ⁻³	1.344 and -1.332 e.Å ⁻³

Table 3. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ with P6₁22 and P6₅22 for C₅₆H₅₆Cl₆Cr₂P₄. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. Only nine atomic coordinates are shown due to the limited space

P6 ₁ 22		P6 ₅ 22						
atom	Х	у	Z	U(eq)	Х	У	Z	U(eq)
Cr	5743(1)	-659(1)	191(1)	35(1)	4257(1)	10659(1)	9809(1)	35(1)
Cl(1)	4802(2)	-2962(2)	124(1)	45(1)	5198(2)	12962(2)	9876(1)	45(1)
Cl(2)	4008(2)	-1131(2)	365(1)	48(1)	5992(2)	11131(2)	9635(1)	48(1)
Cl(3)	7489(2)	0	0	37(1)	2511(2)	10000	10000	37(1)
Cl(4)	4625(2)	0	0	38(1)	5375(2)	10000	10000	38(1)
P(1)	7256(3)	-933(2)	379(1)	41(1)	2744(3)	10933(2)	9621(1)	41(1)
P(2)	6821(2)	1670(2)	320(1)	39(1)	3178(2)	8330(2)	9680(1)	39(1)
C(1)	8029(10)	596(10)	516(1)	47(2)	1971(10)	9404(10)	9484(1)	47(2)
C(2)	7111(10)	1263(11)	521(1)	48(2)	2890(10)	8736(11)	9479(1)	48(2)

는 intensity data를 이용할 수 있다.

4.1. Structure refinement of without anomalous dispersion effect

SHELX-97⁵⁾ 에서 MERG 4(MERG 4 averages all equivalents, including Friedel opposites, and sets all $\delta f'$ values to zero)를 사용하여 anomalous dispersion term 인 $\delta f' = 0$ 라고 놓아 Friedel's law 가 성립 하는 상태에서 compound C₅₆H₅₆Cl₆Cr₂P₄의 structure를 P6₁22와 P6₅22로 refinement한 결과 Table 1 에 보인 바와 같이 모든 crystallographic data 가 모두 동일하였으며 absolute structure parameter x = 10(10)로 absolute structure 는 정할 수 없음을 나타내었다(Expected Flack x is 0(within 3 esd's) for correct and +1 for inverted absolute structure).

따라서 Friedel's law가 성립하는 한 본 시료는 P6₁22와 P6₅22 의 양쪽에 속한다고 볼 수 있다.

측정한 total reflections 67749개 중에서 Friedel's pair를 평균한 unique reflection의 수는 4753개 였다.

Space group P6₅22 로 refine 할 때는 space group P6₁22에서 얻은 atomic coordinates에 command MOVE 1 1 1 -1을 사용하여 inversion symmetry 를 조작한 coordinates로 refine하였다.

4.2. Structure refinement of $C_{56}H_{56}Cl_6Cr_2P_4$ with anomalous dispersion effect

Title compound $C_{56}H_{56}Cl_6Cr_2P_4$ 에는 anomalous scatterer 인 ^{15}P , ^{17}Cl , ^{24}Cr 가 있어 structure factor

value에 충분한 anomalous dispersion effect를 미칠 수 있다. 따라서 SHELX-97⁵⁾에서 MERG 2(= n)(if n = 2, the Friedel opposites are not combined before refinement)를 사용하여 anomalous dispersion term 인 $\Delta f' \neq 0$ 라는 상태에서 compound C₅₆H₅₆Cl₆Cr₂P₄의 structure 를 P6₁22 와 P6₅22 로 refine 한 결과들이

Table 4. Bond lengths (Å) and bond angle $[^{\circ}]$ with P6₁22 and P6₅22. Only nine bond lengths and nine bond angles are given due to the limited space

Bond A-B	P6 ₁ 22	P6 ₅ 22
Cr-Cl(1)	2.298(3)	2.299(3)
Cr-Cl(2)	2.296(3)	2.298(3)
Cr-Cl(3)	2.375(3)	2.374(2)
Cr-Cl(4)	2.399(3)	2.397(2)
Cr-P(1)	2.471(3)	2.472(3)
Cr-P(2)	2.507(3)	2.506(3)
Cl(3)-Cr#1	2.375(3)	2.374(2)
Cl(4)-Cr#1	2.399(3)	2.397(2)
P(1)-C(5)	1.825(12)	2.397(2)
∠A-B-C	P6 ₁ 22	P6 ₅ 22
Cl(1)-Cr-Cl(2)	92.96(12)	92.91(10)
Cl(1)-Cr-Cl(3)	90.66(9)	90.69(7)
Cl(2)-Cr-Cl(3)	174.23(13)	174.23(10)
Cl(1)-Cr-Cl(4)	98.42(9)	98.41(8)
Cl(2)-Cr-Cl(4)	91.54(11)	91.52(9)
Cl(3)-Cr-Cl(4)	83.47(10)	83.48(8)
Cl(1)-Cr-P(1)	89.46(12)	89.46(9)
Cl(2)-Cr-P(1)	94.31(12)	94.30(9)
Cl(3)-Cr-P(1)	90.22(11)	90.24(9)

Symmetry transformations used to generate equivalent atoms: #1 x - y, -y, -z

제19권 1호, 2008

Table 2에 보여져 있다.

Table 2에 의하면 unique reflection 數 7707個

Table 5. Comparison of torsion angles $[^{0}]$ for $C_{56}H_{56}Cl_6Cr_2P_4$ with $P6_122$ and $P6_522$. Only nine torsion angles are shown due to the limited space

	P6 ₁ 22	P6 ₅ 22
Cl(1)-Cr-Cl(3)-Cr#1	98.39(7)	-98.38(7)
Cl(2)-Cr-Cl(3)-Cr#1	-30.2(9)	30.2(9)
Cl(4)-Cr-Cl(3)-Cr#1	0.0	0.000(2)
P(1)-Cr-Cl(3)-Cr#1	-172.16(8)	172.16(8)
P(2)-Cr-Cl(3)-Cr#1	-92.27(7)	92.27(7)
Cl(1)-Cr-Cl(4)-Cr#1	-89.74(7)	89.73(7)
Cl(2)-Cr-Cl(4)-Cr#1	177.09(8)	-177.10(9)
P(1)-Cr-Cl(4)-Cr#1	51.6(5)	-51.6(5)
P(2)-Cr-Cl(4)-Cr#1	95.59(7)	-95.59(7)

Symmetry transformations used to generate equivalent atoms: #1 x - y, -y, -z

(≃ 2 × 4753)는 同一하나 space group P6₁22에서는 reliability factor R1 = 0.1114 이고 absolute structure parameter는 0.10(7)인데 대하여 space group P6₅22 에서는 R1 = 0.1131 이고 absolute structure parameter 는 0.89(7)이므로 본 compound의 space group은 P6₁22 임이 확인되었다. P6₁22와 P6₅22에서 사용한 atomic coordinates는 Table 3에 주어져 있다.

4.3. Method to differentiate P6₁22 from P6₅22

Table 4에서 보인 바와 같이 양쪽 space groups 에서 bond lengths와 bond angles는 같다.

그러나 Table 5에서 보인 바와 같이 torsion angles의 크기는 같으나 부호가 서로 반대임을 알 수 있다.

따라서 11個 enantiomorphic pair space groups간 의 absolute structure의 差異는 torsion angles의 부 호가 반대라는 것이다.

Fig. 1은 title compound 의 structure 의 asymmetric unit 인 half molecule 이며 atoms Cl(3)와 Cl(4)는 2[100]의 symmetry가 지나는 special positions에 놓여 있다.

Fig. 2는 Cl(3)와 Cl(4)를 지나는 2[100] symmetry

Fig. 1. ORTEP⁶⁾ plot of a half molecule of $C_{56}H_{56}Cl_6Cr_2P_4$ with anisotropic thermal factors and 20% probability. Hydrogen atoms are drawn with arbitrary isotropic radii. Space group P6₁22(178). Cl(3) and Cl(4) atoms are located at a Wyckoff letter $a \cdot 2 \cdot$ meaning a special position with 2[100].

Fig. 2. ORTEP⁵⁾ plot of a molecule $C_{56}H_{56}Cl_6Cr_2P_4$. A molecule is completed by a 2[100] symmetry passing through Cl(3) and Cl(4). Hydrogen atoms are omitted for clarity. Only an asymmetric unit of a molecule is labeled.

Fig. 3. Packing diagram of molecules $C_{56}H_{56}Cl_6Cr_2P_4$ with space group P6₁22. There are six molecules in a unit cell with a = b = 11.0901(6) Å, c = 87.205(9) Å, $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$.

에 의하여 이루어진 one molecule이다.

Fig. 3는 unit cell내에 있는 6개 분자의 packing diagram이다.

特記하고 싶은 것은 radius가 100 mm 인 CCD (charge-coupled device) detector 와 sample-detector distance가 48 mm 인 조건에서 axis length *c* = 87.205(9) Å까지의 구조가 밝혀졌다는 것이다.

References

- Kang, S. O. and Suh, I.-H., Fundamental X-Ray Crystallography, Korea University Press (2007), 246-264.
- Choi, K.-Y., et al., Korean J. Crystallography, 16, (2005) 21-29.
- 3) Flack, H. D., Acta Cryst., A39, (1983) 876-881.
- Bruker SMART (Version 5.0) and SAINT-plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, U.S.A. (1999).
- 5) Sheldrick, G. M., SHELX-97. University of Goettingen, Germany (1977).
- 6) Farrugia, L. J., J. Appl. Cryst., 30, (1997) 565.

(Received 15 July 2008; accepted 21 July 2008) Published online 31 July 2008