• Title/Summary/Keyword: Material dispersion

Search Result 765, Processing Time 0.028 seconds

Morphology, Thermal, Electrical Properties for Epoxy-Layered Silicate Nanocomposites using Homogenizer +Ultrasonic Dispersion Method (Homogenizer+Ultrasonic을 이용한 Epoxy-Layered Silicate Nanocomposites의 구조적, 열적, 전기적 특성연구)

  • Park, Jae-Jun;Um, Ji-Yong;Lee, Chang-Hun;Kim, Min-Kyu;Baek, Kwan-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.287-288
    • /
    • 2008
  • 에폭시-층상실리케이트 나노콤포지트의 균질분산과 층상실리케이트내로 침투되는 박리정도를 향상시키기 위해 친환경적 분산기법인 물리적방법으로 Homogenizer와 Power Ultrasonic를 적용한 기법을 실시하였다. Homogenizer의 최적속도를 얻기 위해 분산시킨 나노콤포지트의 박리정도, 유리천이온도를 구할 수 있었고, Homogenizer와 Ultrasonic을 동시에 적용하여 최적시간을 구하기 위해 적용된 나노콤포지트를 절연파괴 강도의 Weibull Plots을 통하여 판단할 수 있는 좋은 결과를 얻을 수 있었다.

  • PDF

Effect of Dispersion Agents for Epoxy-Organoclay Nanocomposites (Epoxy-Organoclay Nanocomposites의 Dispersion Agent 영향)

  • Park, Jae-Jun;Cho, Dae-Ryung;Lee, Hyun-Dong;Bang, Byung-Yun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.296-297
    • /
    • 2008
  • 층상실리케이트 나노입자가 충진된 에폭시수지를 분산정도 향상을 위해 즉, 층상실리케이트 층간간경의 삽입과 박를 향상시키기 위해 분산제를 첨가하였고, 초음파 적용으로 분산시켰다. 그 결과 분산제 종류에따라 분산정도인 X-RD 특성이 서로다른 결과를 얻었다. 절연성능을 평가하기위해 단시간 절연파괴강도와 장시간 절연파괴특성인 트리시스템을 이용하여 절연파괴시간 및 측정하였다. 이와같은 결과에대한 통계적인 분석으로 Weibull plots를 이용하였고 그 결과 분산제가 첨가된 나노콤포지트의 기울기 파라미터인 $\beta$값의 결과로부터 나노콤포지트 우수성을 확인 할수있었다.

  • PDF

Dispersion Technique of Alumina Nanoparticles in Transformer Oil (알루미나 나노분말을 함유한 변압기 절연유의 분산기술)

  • Song Hyunwoo;Choi Cheol;Choi Kyungshik;Oh Jemyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.233-239
    • /
    • 2006
  • Two different nanofluids were prepared by dispersing $Al_{2}O_3$ nanoparticles in transformer oil after hydrophobic surface modification. The agglomerated alumina nanoparticles with diameters from ${\mu}m$ to mm were ball-milled and then treated with surfactants such as lauric acid, stearic acid and oleic acid. The surface characteristics of modified nanoparticles were examined by FTIR spectroscopy. It showed that the hydrophobicity of nanoparticles was caused by esterification between hydroxyl groups on the particle surface and functional groups of surfactant. The shape and size distribution of ball-milled particles were analyzed by TEM and PSA. The results compared with the primary particles indicated that the size distributions of nanoparticles were dependant on milling times. The dispersion stability of modified nanoparticles dispersed in oil was highly dependent on the composition and amounts of surfactants.

Anisotropic Dispersion Force Effects for Surface Liquid Crystal Alignment on Rubbed Polystyrene Surfaces (러빙처리된 폴리스타이렌막 표면에있어서의 표면 액정 배향에관한 이방성 분산력의 효과)

  • 서대식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.105-108
    • /
    • 1996
  • We have studied the anisotropic dispersion force effects for surfaces alignment of liquid crystals (LCs) on rubbed polystyrene (PS) surfaces by unidirection. In microphotographs of the textures, we obtained the nematic (N) LCs are shown to align in both direction parallel and Perpendicular to the rubbing for region up to medium rubbing, however to align in the direction perpendicular to the rubbing for strong rubbing legion. We suggest that the anisotropic dispersion force is very important rather than macro-surface groove effect to uniform alignment of LCs. We also measured the temperature dependence of extrapolation length of 5CB on rubbed PS surfaces for strong rubbing. It is shown that the polar anchoring strength of 5CB is very weak on rubbed PS surface compared to the rubbed polyimide (Pl) surface.

  • PDF

Effect of Dispersion Technique on Heat Transfer Properties of Transformer Oil with Nanoparticles (변압기 나노절연유의 열전달특성에 미치는 분산기술의 영향)

  • Song, Hyun-Woo;Choi, Cheol;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.151-152
    • /
    • 2005
  • Both $Al_2O_3$ and AlN nanopowders with diameters from ${\mu}m$ to mm were bead-milled and surface-modified by stabilizing agent. The size of bead-milled nanoparticles compared with the primary powder was effectively decreased and was dependent on milling time and bead size. The results of dispersion stability analysis indicated that chemical bonding between nanoparticles and surfactant is more effective than chemical adsorption to prepare the stable transformer oils containing nanoparticles. In this study, the thermal conductivity of the transformer oils containing nanoparticles was measured by transient hot-wire and laser flash methods.

  • PDF

Quality and Yield Improvement Analysis of CNT Oil Sensor (CNT Oil Sensor의 특성과 수율 향상 분석)

  • Park, Jung-Ho;Lee, Eui-Bok;Lau, Vincent;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.682-685
    • /
    • 2011
  • An engine oil sensor based on multiwall carbon nanotubes was fabricated with screen printing method. Since carbon nanotubes are generally intertwined, dispersion of the carbon nanotubes in the binding agent (ethyl cellulose, a-terpineol, frit) is a key factor for large yield of engine oil sensor. By conventional dispersion method, a hand-mill method, the maximum yield was 80% at most. However, we used the hand ultrasonic, in order to increase the yield of the sensors. As a results, our engine oil sensor fabricated by the screen printing method shows excellent yield rate of 97%, when we dispersed a paste by the hand ultrasonic method.

High-Quality Epitaxial Low Temperature Growth of In Situ Phosphorus-Doped Si Films by Promotion Dispersion of Native Oxides (자연 산화물 분산 촉진에 의한 실 시간 인 도핑 실리콘의 고품질 에피택셜 저온 성장)

  • 김홍승;심규환;이승윤;이정용;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.125-130
    • /
    • 2000
  • Two step growth of reduced pressure chemical vapor eposition has been successfully developed to achieve in-situ phosphorus-doped silicon epilayers, and the characteristic evolution on their microstructures has been investigated using scanning electron microscopy, transmission electron microscopy, and secondary ion mass spectroscopy. The two step growth, which employs heavily in-situ P doped silicon buffer layer grown at low temperature, proposes crucial advantages in manipulating crystal structures of in-situ phosphorus doped silicon. In particular, our experimental results showed that with annealing of the heavily P doped silicon buffer layers, high-quality epitaxial silicon layers grew on it. the heavily doped phosphorus in buffer layers introduces into native oxide and plays an important role in promoting the dispersion of native oxides. Furthermore, the phosphorus doping concentration remains uniform depth distribution in high quality single crystalline Si films obtained by the two step growth.

  • PDF

Thermal, Mechanical, and Electrical Properties for EMNC_60 and EMNC_65 (EMNC_60과 EMNC_65에 대한 열적, 기계적, 전기적 특성 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.895-901
    • /
    • 2012
  • In order to application for high voltage heavy electric equipments, epoxy/microsilica 60 wt%/nano layered silicate composites (EMNC_60) and epoxy/microsilica 65 wt%/nano layered silicate composites (EMNC_65) respectively was synthesized by our electric field dispersion method and the result was obtained completely dispersion state. Thermal properties such as glass transition temperature (Tg) and thermal expansion coefficient, and DMA characteristics were studied, and mechanical properties such as tensile and flexural tests were performed. AC electrical insulation strength was also tested. The study on thermal property, EMNC_65 was better than EMNC_60 and mechanical, electrical properties much improved EMNC_60 compared with EMNC_65.

Preparation and Dispersion Characteristics of Oil-based Magnetic Fluids with Synthesized Magnetite (합성마그네타이트를 이용한 유상자성유체의 제조 및 분산특성)

  • Cho, Myeong-Ho;Kim, Mahn;Min, Dong-Joon;Oh, Jae-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.901-908
    • /
    • 1996
  • The oil-based magnetic fluids were prepared with synthesized ultrafine magnette by allowing surfactactants such as sodium oleate and aliquat 336 to adsorb on the surface of magnetite particles. The dispersion ratio of oil-based magnetic fluids was higher than 90% when the amount of sodium oleate and aliqua 336 were more than 2.63$\times$10-2 mol and 6.56$\times$10-3 mol for 20g of magnetite respectively. The dispersion ratio of oil-based magnetic fluids with the amount of secondary surfactant addition was higher than 90% when oil-based magnetic fluids were prepared with aliquat 336 of cationic type. However oil-based magnetic fluids prepared with surfactants of anionic and nonionic type showed lower dispersion than whose with cationic surfac-tants.

  • PDF

Modeling of rheological behavior of nanocomposites by Brownian dynamics simulation

  • Song Young Seok;Youn Jae Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.201-212
    • /
    • 2004
  • Properties of polymer based nanocomposites depend on dispersion state of embedded fillers. In order to examine the effect of dispersion state on rheological properties, a new bi-mode FENE dumbbell model was proposed. The FENE dumbbell model includes two separate ensemble sets of dumbbells with different fric­tion coefficients, which simulate behavior of well dispersed and aggregated carbon nanotubes (CNTs). A new parameter indicating dispersion state of the CNT was proposed to account for degree of dispersion quantitatively as well as qualitatively. Rheological material functions in elongational, steady shear, and oscillatory shear flows were obtained numerically. The CNT/epoxy nanocomposites with different dis­persion state were prepared depending on whether a solvent is used for the dispersion of CNTs or not. Dis­persion state of the CNT in the epoxy nanocomposites was morphologically characterized by the field emission scanning electronic microscope and the transmission electron microscope images. It was found that the numerical prediction was in a good agreement with experimental results especially for steady state shear flow.