• Title/Summary/Keyword: Material Selection

Search Result 960, Processing Time 0.031 seconds

Theoretical analysis of rotary hyperelastic variable thickness disk made of functionally graded materials

  • Soleimani, Ahmad;Adeli, Mohsen Mahdavi;Zamani, Farshad;Gorgani, Hamid Haghshenas
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • This research investigates a rotary disk with variable cross-section and incompressible hyperelastic material with functionally graded properties in large hyperelastic deformations. For this purpose, a power relation has been used to express the changes in cross-section and properties of hyperelastic material. So that (m) represents the changes in cross-section and (n) represents the manner of changes in material properties. The constants used for hyperelastic material have been obtained from experimental data. The obtained equations have been solved for different m, n, and (angular velocity) values, and the values of radial stresses, tangential stresses, and elongation have been compared. The results show that m and n have a significant impact on disk behavior, so the expected behavior of the disk can be obtained by an optimal selection of these two parameters.

Material Selection Optimization of A-Pillar and Package Tray Using RBFr Metamodel for Minimizing Weight (경량화를 위한 RBFr 메타모델 기반 A-필러와 패키지 트레이의 소재 선정 최적화)

  • Jin, Sungwan;Park, Dohyun;Lee, Gabseong;Kim, Chang Won;Yang, Heui Won;Kim, Dae Seung;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, we propose the method of optimally selecting material of front pillar (A-pillar) and package tray for minimizing weight while satisfying vehicle requirements on static stiffness and dynamic stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness and dynamic stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the radial basis function regression (RBFr). Using the RBFr models, optimization is carried out an evolutionary algorithm that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 49.8% while satisfying all the design constraints.

The figure of merit for hall element materials (Hall소자 재료의 특성지수)

  • 이정한
    • 전기의세계
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 1976
  • Criteria and significance of the factor .root..mu..$R_{u}$ or ($R_{u}$/.root.p) in Hall element material selection are discussed. And the chart which is useful to compare the figure of merit F=.root..mu..$R_{u}$ in Hall element materials is presented with the F's for some practical Hall device materials.als.

  • PDF

An Experimental Study on the Carbonation Properties of Concrete According to Accelerating Carbonation Conditions (촉진중성화 조건에 따른 콘크리트의 중성화 특성에 관한 실험적 연구)

  • 문형재;이의배;송민섭;주지현;조봉석;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.41-44
    • /
    • 2004
  • Recently, in the case of domestic, for all that the deterioration environment about the carbonation of reinforced concrete structures is accelerated, systematic diagnosis and researches are not completed. And the selection techniques of repair material and method used under the situation that the indicator and the performance evaluation method are nor established are dependant on existing experience. Therefore, the purpose of this study is intend to present fundamental data for the reasonable selection of repair material and method. durability design and longevity on the deteriorated reinforced concrete structures, through computing the carbonation depth and velocity coefficient by accelerating carbonation test under various accelerating conditions and investigating the application of carbonation evaluation method. The results of this study are as follow; The resistances to carbonation are increased when the W/C ratio if lower and the treatment of surface coating is executed. And the carbonation depth and velocity coefficient according to accelerating carbonation test conditions are increased when the conditions of temperature, relative humidity and $CO_2$density are higher individually.

  • PDF

Study on Selection of HTS Wire for Fabrication of Fault Current-limiting Type HTS Cables (사고전류 제한형 초전도케이블 제작을 위한 초전도 선재 선정에 관한 연구)

  • Heo, Soung-Ouk;Kim, Tae-Min;Han, Byung-Sung;Du, Ho-Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.904-908
    • /
    • 2013
  • When an abnormal condition occurs due to a fault current at a consumer location where electricity is supplied through a high-capacity and high-$T_c$ superconducting(HTS) cable, the HTS cable would be damaged if there is no appropriate measure to protect it. Therefore, appropriate measures are needed to protect HTS cables. The fault-current-limiting HTS cable that was suggested in this study performs an ideal transport current function in normal operations and plays a role in limiting a fault current in abnormal operation (i.e., when a fault current is applied). It has a structure that facilitated its self-current-limiting ability through device change and reconfiguration in the existing HTS cable without extra switching equipment. To complete this structure, it is essential to investigate about the selection of the superconducting wire. Therefore, in this paper, HTS wire using two types of different stabilization layer is compared and examined the stability and current limiting properties under the existence of a fault current.

Lifetime Assessments on 154 kV Transmission Porcelain Insulators with a Bayesian Approach (베이지안 방법론을 적용한 154 kV 송전용 자기애자의 수명 평가 개발)

  • Choi, In-Hyuk;Kim, Tae-Kyun;Yoon, Yong-Beum;Yi, Junsin;Kim, Seong Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.551-557
    • /
    • 2017
  • It is extremely important to improve methodologies for the lifetime assessment of porcelain insulators. While there has been a considerable amount of work regarding the phenomena of lifetime distributions, most of the studies assume that aging distributions follow the Weibull distribution. However, the true underlying distribution is unknown, giving rise to unrealistic inferences, such as parameter estimations. In this article, we review several distributions that are commonly used in reliability and survival analysis, such as the exponential, Weibull, log-normal, and gamma distributions. Some properties, including the characteristics of failure rates of these distributions, are presented. We use a Bayesian approach for model selection and parameter estimation procedures. A well-known measure, called the Bayes factor, is used to find the most plausible model among several contending models. The posterior mean can be used as a parameter estimate for unknown parameters, once a model with the highest posterior probability is selected. Extensive simulation studies are performed to demonstrate our methodologies.

Support Vector Machine Model to Select Exterior Materials

  • Kim, Sang-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.238-246
    • /
    • 2011
  • Choosing the best-performance materials is a crucial task for the successful completion of a project in the construction field. In general, the process of material selection is performed through the use of information by a highly experienced expert and the purchasing agent, without the assistance of logical decision-making techniques. For this reason, the construction field has considered various artificial intelligence (AI) techniques to support decision systems as their own selection method. This study proposes the application of a systematic and efficient support vector machine (SVM) model to select optimal exterior materials. The dataset of the study is 120 completed construction projects in South Korea. A total of 8 input determinants were identified and verified from the literature review and interviews with experts. Using data classification and normalization, these 120 sets were divided into 3 groups, and then 5 binary classification models were constructed in a one-against-all (OAA) multi classification method. The SVM model, based on the kernel radical basis function, yielded a prediction accuracy rate of 87.5%. This study indicates that the SVM model appears to be feasible as a decision support system for selecting an optimal construction method.

Earth Building Characteristic Analysis to Utilize in Architecture Plan (건축 계획적 활용을 위한 흙건축 특성분석)

  • Lee, jang-hyuk;Hwang, hey-zoo;Kim, Jeong-Gyu
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.3-8
    • /
    • 2007
  • This study is aimed to apply basic data to planning earth building through analyzing characteristics of earth building. For doing it, we investigated a research paper in advanced countries(New zealand, Australia, etc.) that has been used for earth building standards for a long time, and then we corrected inadequate standards that would apply our earth building environment. As a result, we can devide earth characteristics into three parts that are materials, plan, and maintenance and repair. First, as material selection is very important factor, a general plan is possible to change in accordance with what material is selected. These methods that made mud brick, pressed earth block, rammed earth, cob have been well used during the current 30 years in earth building. Second, the plan is composed of site select and architecture plan. In architecture plan, we should consider from foundation to eaves protection, and in site selection, consider sides of the environment and the social. Third, we should always check a periodical inspection through watchful observation because earth buildings need more time and efforts in maintaining and repairing than others.