• Title/Summary/Keyword: Material Reduction Rate

검색결과 475건 처리시간 0.024초

Groutability enhancement by oscillatory grout injection: Verification by field tests

  • Kim, Byung-Kyu;Lee, In-Mo;Kim, Tae-Hwan;Jung, Jee-Hee
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.59-69
    • /
    • 2019
  • Grout injection is mainly used for permeability reduction and/or improvement of the ground by injecting grout material into pores, cracks, and joints in the ground. The oscillatory grout injection method was developed to enhance the grout penetration. In order to verify the level of enhancement of the grout, field grout injection tests, both static and oscillatory tests, were performed at three job sites. The enhancement in the permeability reduction and ground improvement effect was verified by performing a core boring, borehole image processing analysis, phenolphthalein test, scanning electron microscopy analysis, variable heat test, Lugeon test, standard penetration test, and an elastic wave test. The oscillatory grout injection increased the joint filling rate by 80% more and decreased the permeability coefficient by 33-68%, more compared to the static grout injection method. The constrained modulus of the jointed rock mass was increased by 50% more with oscillatory grout injection compared to the static grout injection, indicating that the oscillatory injection was more effective in enhancing the stiffness of the rock mass.

Impacts of Saudi Arabian fly ash on the structural, physical, and radiation shielding properties of clay bricks rich vermiculite mineral

  • Aljawhara H. Almuqrin;Abd Allh M. Abd El-Hamid;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2324-2331
    • /
    • 2024
  • The current study investigated Saudi Arabian oil fly ash impacts on Egyptian clay bricks' structural and radiation shielding properties. To produce the required bricks, crushed clay minerals from the Hafafit area were mixed with 0, 10, 20, 30, and 40 % wt.% Saudi Arabian oil fly ash and pressed at a pressure rate of 68.55 MPa. Identification of the minerals in the chosen clay was achieved via X-ray diffraction. Additionally, the material's morphology and chemical composition were determined through scanning electron microscope and energy-dispersive X-ray. The fabricated bricks' density was reduced by 36.3 % through increasing the concentration of fly ash from 0 to 40 wt%. Then, the fly ash addition's influence on the fabricated clay bricks' γ-ray shielding properties was investigated by Monte Carlo simulation, which found a reduction in the fabricated bricks' linear attenuation coefficient (LAC) by 41.2, 36.0, 33.8, and 33.8 % at the 0.059, 0.103, 0.662, and 1.252 MeV γ-ray energies, respectively. The LAC reduction caused an increase in the fabricated bricks' half-value thickness, transmission factor, and the equivalent thickness of the lead. Moreover, the thicker fabricated sample thicknesses were found to have high γ-ray shielding capacity and can thus be used in radiation shielding applications.

Inductively Coupled Plasma를 이용한 lead-zirconate-titanate 박막의 식각 손상 개선 (The reduction of etching damage in lead-zirconate-titanate thin films using Inductively Coupled Plasma)

  • 임규태;김경태;김동표;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.178-181
    • /
    • 2003
  • In this work, we etched PZT films with various additive gases ($O_2$ and Ar) in $Cl_2/CF_4$ plasmas, while mixing ratio was fixed at 8/2. After the etching, the plasma induced damages are characterized in terms of hysteresis curves, leakage current, retention properties, and switching polarization. When the electrical properties of PZT etched in $O_2$ or Ar added $Cl_2/CF_4$ were compared, the value of remanent polarization in $O_2$ added $Cl_2/CF_4$ plasma is higher than that in Ar. added plasma. The maximum etch rate of the PZT thin films was 145 nm/min for 30% Ar added $Cl_2/CF_4$ gas having mixing ratio of 8/2 and 110 nm/min for 10% $O_2$ added to that same gas mixture. In order to recover the ferroelectic properties of the PZT thin films after etching, we annealed the etched PZT thin films at $550^{\circ}C$ in an $O_2$ atmosphere for 10 min. From the hysteresis curves, leakage current, retention property and switching polarization, the reduction of the etching damage and the recovery via the annealing was turned out to be more effective when $O_2$ was added to $Cl_2/CF_4$ than Ar. X-ray diffraction (XRD) showed that the structural damage was lower when $O_2$ was added to $Cl_2/CF_4$. And the improvement in the ferroelectric properties of the annealed samples was consistent with the increased intensities of the (100) and the (200) PZT peaks.

  • PDF

FDM 3D Printer의 층간 충진율에 따른 강도변화 (Strength Variation with Inter-Layer Fill Factor of FDM 3D Printer)

  • 강용구;권현규;신근식
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.66-73
    • /
    • 2019
  • Recently, FDM-type 3D printer technology has been developed, and efforts have been made to improve the output formability and characteristics further. Through this, 3D printers are used in various fields, and printer technologies are suggested according to usage, such as FDM, SLA, DLP, and SLM. In particular, the FDM method is the most widely used, and the FDM method technology is being developed further. The characteristics of the output are produced by the FDM-type 3D printer, which is determined by various factors, and particularly the perspective of the Inter-Layer Fill Factor, which is the volume ratio of the laminated material that exerts a direct influence. In this study, the Inter-Layer Fill Factor is theoretically obtained by presenting the internal space between each layer according to the laminate thickness as a cross-sectional shape model, and the cross section of the actual laminated sample is compared with the theoretical model through experiments. Then, the equation for the theoretical model is defined, and the strength change according to each condition (tensile strength of material, reduction slope, strength reduction rate, and output strength) is confirmed. In addition, we investigated the influence on the correlation and strength between laminate thickness and the Inter-Layer Fill Factor.

BIPV 적용을 위한 컬러 필름 기반의 출력 특성 연구 (A Study on Color Film-based Output Characteristics for BIPV Application)

  • 남혜령;문지연;전다영;박고등;오트곤게렐 줄만다크;권오련;임현수;김성현
    • Current Photovoltaic Research
    • /
    • 제11권2호
    • /
    • pp.49-53
    • /
    • 2023
  • Expanding the supply of BIPV is crucial to strengthening the competitiveness of the photovoltaic industry and achieving Nationally Determined Contributions through the zero-energy building mandatory policy. BIPV is a technology that integrates into the building envelope to generate electricity and provide functions as a building material. It is suitable for domestic environments with many high-rise buildings due to the narrow land area and urbanization. To expand the supply of BIPV, economics, safety, and aesthetics must be ensured. In this study, a color BIPV module with a color PET film applied as a front material was manufactured for aesthetic and economic feasibility. The relationship between power output and transmittance according to color was analyzed. By analyzing the power output of the module and the transmittance of the film, the wavelength band (transmittance reduction band) that has the greatest effect on efficiency was analyzed regarding the color of the film. The red film showed the narrowest transmittance reduction band and the lowest degree of decrease in transmittance, making it ideal for minimizing the efficiency decrease rate compared to existing ones.

표면처리에 의한 오일팜 EFB 기반 펄프몰드의 흡수특성 변화 (Changes in the Water Absorption Properties of Pulp Mold manufactured with Oil Palm EFB by surface treatments)

  • 김동성;성용주;김철환;김세빈
    • 펄프종이기술
    • /
    • 제47권1호
    • /
    • pp.75-83
    • /
    • 2015
  • The applicability of oil palm biomass, EFB(Empty Fruit Bunch) as raw materials for environmental friendly packaging material, pulp mold, was evaluated in this study. The changes in the water absorption properties of pulp mold by the addition of EFB and the surface treatments with PVA and AKD were analyzed by measuring the changes in the water absorption rate and the water contact angle. The each pulp mold sample was prepared by using laboratory wet pulp molder. And the water absorption rate of each samples were evaluated by measuring times for the absorption of a 0.1 ml water drop on the pulp mold sample surface. The addition of EFB to the pulp mold made of OCC resulted in the decrease of water absorption rate and the increase in the water contact angle. The surface treatments with PVA and AKD on the OCC pulp mold showed the significant reduction in the water absorption rate. However, in case of ONP pulp mold, the addition of EFB and the surface treatments with PVA and AKD showed no big changes in water absorption times. Those might be come from the finer surface structure of ONP pulp mold which were made of more finer and flexible fibers and more hydrophilic fibers. The results of this study showed the functional properties such as water absorption rate, could be controlled by the application of EFB and the treatments with AKD or PVA, especially in case of the OCC pulp mold.

전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발 (Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual)

  • 김동철;김유승;여찬수;김선빈;박승민
    • 한국연안방재학회지
    • /
    • 제5권4호
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

열처리에 의해 제조된 강아지풀 기반 리튬 이온 이차전지용 탄소 음극재의 전기화학적 특성 (Electrochemical Characteristics of Setaria viridis-Based Carbon Anode Materials Prepared by Thermal Treatment for Lithium-Ion Secondary Batteries)

  • 김동기;임채훈;명성재;하나은;민충기;이영석
    • 공업화학
    • /
    • 제35권2호
    • /
    • pp.140-147
    • /
    • 2024
  • 바이오매스 활용을 높이기 위하여, 열처리 공정을 통해 강아지풀 기반 리튬 이온 이차 전지용 탄소음극재(SV-C)를 제조한 뒤 전기화학적 성능을 고찰하였다. 강아지풀의 열처리 온도가 750 ℃로 낮을 때 낮은 결정성과 높은 비표면적(126 m2/g)과 함께, 표면에 많이 존재하는 산소의 (-) 전하가 리튬을 끌어당김으로 인하여 비정전용량(1003.3 mAh/g, at 0.1 C)이 높지만, 용량 유지율은 61.0% (at 500 cycles and 1 C)로 낮아지는 것으로 여겨진다. 또한, 열처리온도가 1150 ℃로 증가하면 탄소층이 축합되어 배열이 우수해짐에 따라 구조 결함이 감소하여 기공이 크게 줄어 비표면적(32 m2/g)이 감소한 것으로 확인되었다. 또한, 음극재 표면결함이 감소하여 결정성이 높아지게 되면, 용량 유지율은 89.7% (at 500 cycles and 1 C)로 높지만, 결함 정도가 작아 활성점이 줄어들어 비정전용량이 471.7 mAh/g로 매우 낮은 것으로 여겨진다. 본 연구 범위에서, 열처리 온도에 따라 제조된 강아지풀 기반 탄소음극재의 경우, 비표면적에 비해 표면 산소 함량과 결정성 등이 음극재의 전기화학적 특성에 더 높은 신뢰도를 갖는 것으로 나타났다.

가정용 소형 발효용기에 의한 음식물쓰레기 퇴비화과정 중 질석의 첨가효과 (Effect of Vermiculite Addition on Composting of Compostable Household Wastes in a Small Bin)

  • 서정윤;허종수;한종필;박주원;황면훈
    • 유기물자원화
    • /
    • 제8권3호
    • /
    • pp.131-140
    • /
    • 2000
  • 가정에서 발생되는 퇴비화 가능한 폐기물 중 폐지 및 폐골탄지를 제외한 폐기물을 매일 1kg 정도씩 소형 퇴비화 3개의 소형 퇴비화용기 중 하나는 퇴비만, 또 하나에는 퇴비와 퇴비화 가능한 가정 폐기물 그리고 다른 하나에는 퇴비와 질석 그리고 퇴비화 가능한 가정 폐기물을 넣어 퇴비화하면서 정확한 매일의 무게 감소율, 분해 율(유기물감소비율)과 퇴비화 혼합물질의 각종 이 화학성 변화를 조사하였다. 30일 후 총 무게 감소율은 퇴비를 첨가제로 사용하였을 경우 57.32% 그리고 퇴비와 질석을 함께 첨가제로 사용하였을 때 64.71%이었다. 퇴비만을 첨가제로 사용하였을 경우 퇴비화 혼합물(퇴비+퇴비화 가능한 가정 폐기물)의 총 무게 감소율은 6.81% 그리고 분해율은 7.76%로 큰 차이가 없었다. 그러나 투입된 퇴비화 가능한 폐기물만을 기준으로 계산한 결과 매일 무게 감소율은 첨가제로 퇴비와 질석을 함께 사용하였을 경우 퇴비화 혼합물(퇴비+질석+퇴비화 가능한 가정 폐기물)의 매일 총무게 감소율은 64.99% 그리고 분해율은 1.48%이었으나 투입된 퇴비화 가능한 가정 폐기물만을 기준으로 매일 총무게 감소율은 4.36% 그리고 분해율은 35.46%이었다. 따라서 투입된 퇴비화 가능한 가정 폐기물만을 기준으로 계산된 매일의 분해율은 퇴비만을 첨가제로 사용하였을 경우 6.79% 그리고 퇴비와 질석을 같이 사용하였을 경우 35.46%로 질석의 첨가가 퇴비화 가능한 가정 폐기물의 분해 속도를 크게 증가시켰다. 퇴비화 혼합물 중의 MgO, $K_2O$ 및 Cr 함량은 질석을 첨가제로 사용하였을 경우가 사용하지 않았을 경우보다 퇴비화 초기에 높았다. 반면에 유기물, CaO, NaCl 및 $P_2O_5$ 함량은 질석을 첨가하였을 경우 낮아졌다.

  • PDF

ALBC3 합금의 쇼트피닝 분사거리에 따른 해수 내 캐비테이션 손상 평가 (Evaluation on cavitation damage in sea water with shot peening stand-off distance for ALBC3 alloy)

  • 한민수;장석기;김종신;김성종
    • Corrosion Science and Technology
    • /
    • 제12권5호
    • /
    • pp.239-244
    • /
    • 2013
  • Marine equipment exposed to harsh environments requires not only excellent corrosion resistance but also improvement of physical characteristics against natural material degradation. With growing interests in ocean energy resources, the higher reliability for marine equipment has become more important in terms of material characteristics. ALBC3 alloy represents excellent corrosion resistance and is widely used in corrosive environments. However, cavitation damage occurs frequently due to its poor durability in high flow rate of marine environment. In this research, shot peening technology was employed as a surface modification with shot peening stand-off distance to mitigate cavitation damage. The effects of shot peening on extent of cavitation damage and weight loss were evaluated for both shot peened and non-peened specimens. The results revealed that the application of shot peeing decreased cavitation damage for all experimental conditions in comparison with the non-peened specimens. The optimum stand-off distance was determined to be 10 cm, since more than 35 % of cavitation damage reduction was observed.