• Title/Summary/Keyword: Matching index

Search Result 284, Processing Time 0.025 seconds

Design and Implementation of a Boundary Matching System Supporting Partial Denoising for Large Image Databases

  • Kim, Bum-Soo;Kim, Jin-Uk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.35-40
    • /
    • 2019
  • In this paper, we design and implement a partial denoising boundary matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform a fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI(graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client and sends the resulting images to the client. Experimental results show that our system provides many intuitive and accurate matching results.

Video Index Generation and Search using Trie Structure (Trie 구조를 이용한 비디오 인덱스 생성 및 검색)

  • 현기호;김정엽;박상현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.610-617
    • /
    • 2003
  • Similarity matching in video database is of growing importance in many new applications such as video clustering and digital video libraries. In order to provide efficient access to relevant data in large databases, there have been many research efforts in video indexing with diverse spatial and temporal features. however, most of the previous works relied on sequential matching methods or memory-based inverted file techniques, thus making them unsuitable for a large volume of video databases. In order to resolve this problem, this paper proposes an effective and scalable indexing technique using a trie, originally proposed for string matching, as an index structure. For building an index, we convert each frame into a symbol sequence using a window order heuristic and build a disk-resident trie from a set of symbol sequences. For query processing, we perform a depth-first search on the trie and execute a temporal segmentation. To verify the superiority of our approach, we perform several experiments with real and synthetic data sets. The results reveal that our approach consistently outperforms the sequential scan method, and the performance gain is maintained even with a large volume of video databases.

Comparison of Fusion Methods for Generating 250m MODIS Image

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.305-316
    • /
    • 2010
  • The MODerate Resolution Imaging Spectroradiometer (MODIS) sensor has 36 bands at 250m, 500m, 1km spatial resolution. However, 500m or 1km MODIS data exhibits a few limitations when low resolution data is applied at small areas that possess complex land cover types. In this study, we produce seven 250m spectral bands by fusing two MODIS 250m bands into five 500m bands. In order to recommend the best fusion method by which one acquires MODIS data, we compare seven fusion methods including the Brovey transform, principle components algorithm (PCA) fusion method, the Gram-Schmidt fusion method, the least mean and variance matching method, the least square fusion method, the discrete wavelet fusion method, and the wavelet-PCA fusion method. Results of the above fusion methods are compared using various evaluation indicators such as correlation, relative difference of mean, relative variation, deviation index, peak signal-to-noise ratio index and universal image quality index, as well as visual interpretation method. Among various fusion methods, the local mean and variance matching method provides the best fusion result for the visual interpretation and the evaluation indicators. The fusion algorithm of 250m MODIS data may be used to effectively improve the accuracy of various MODIS land products.

Optimization of Post-Processing for Subsequence Matching in Time-Series Databases (시계열 데이터베이스에서 서브시퀀스 매칭을 위한 후처리 과정의 최적화)

  • Kim, Sang-Uk
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.555-560
    • /
    • 2002
  • Subsequence matching, which consists of index searching and post-processing steps, is an operation that finds those subsequences whose changing patterns are similar to that of a given query sequence from a time-series database. This paper discusses optimization of post-processing for subsequence matching. The common problem occurred in post-processing of previous methods is to compare the candidate subsequence with the query sequence for discarding false alarms whenever each candidate subsequence appears during index searching. This makes a sequence containing candidate subsequences to be accessed multiple times from disk, and also have a candidate subsequence to be compared with the query sequence multiple times. These redundancies cause the performance of subsequence matching to degrade seriously. In this paper, we propose a new optimal method for resolving the problem. The proposed method stores ail the candidate subsequences returned by index searching into a binary search tree, and performs post-processing in a batch fashion after finishing the index searching. By this method, we are able to completely eliminate the redundancies mentioned above. For verifying the performance improvement effect of the proposed method, we perform extensive experiments using a real-life stock data set. The results reveal that the proposed method achieves 55 times to 156 times speedup over the previous methods.

Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit for Multiple Measurement Vectors (병렬OMP 기법을 통한 복수 측정 벡터기반 성긴 신호의 복원)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2252-2258
    • /
    • 2013
  • In this paper, parallel orthogonal matching pursuit (POMP) is proposed to supplement the simultaneous orthogonal matching pursuit (S-OMP) which has been widely used as a greedy algorithm for sparse signal recovery for multiple measurement vector (MMV) problem. The process of POMP is simple but effective: (1) multiple indexes maximally correlated with the observation vector are chosen at the first iteration, (2) the conventional S-OMP process is carried out in parallel for each selected index, (3) the index set which yields the minimum residual is selected for reconstructing the original sparse signal. Empirical simulations show that POMP for MMV outperforms than the conventional S-OMP both in terms of exact recovery ratio (ERR) and mean-squared error (MSE).

Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit and Its Performances (병렬OMP 기법을 통한 성긴신호 복원과 그 성능)

  • Park, Jeonghong;Jung, Bang Chul;Kim, Jong Min;Ban, Tae Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1784-1789
    • /
    • 2013
  • In this paper, parallel orthogonal matching pursuit (POMP) is proposed to supplement the orthogonal matching pursuit (OMP) which has been widely used as a greedy algorithm for sparse signal recovery. The process of POMP is simple but effective: (1) multiple indexes maximally correlated with the observation vector are chosen at the firest iteration, (2) the conventional OMP process is carried out in parallel for each selected index, (3) the index set which yields the minimum residual is selected for reconstructing the original sparse signal. Empirical simulations show that POMP outperforms than the existing sparse signal recovery algorithms in terms of exact recovery ratio (ERR) for sparse pattern and mean-squared error (MSE) between the estimated signal and the original signal.

An efficient matching mechanism for real-time sensor data dissemination (실시간 센서 데이터 배포를 위한 효율적 매칭)

  • Seok, Bo-Hyun;Lee, Pill-Woo;Huh, Eui-Nam
    • Journal of Internet Computing and Services
    • /
    • v.9 no.1
    • /
    • pp.79-90
    • /
    • 2008
  • In the ubiquitous environment sensor network technologies have advanced for collecting information of the environment. With the rapid growth of sensor network technology, it is necessary and important to share the collected sensor data with a large base of diverse users. In order to provide dissemination of sensor data, we design an information dissemination system using an independent disseminator between provider and consumer. This paper describes how we designed the information dissemination system using one of the possible dissemination patterns for sensor networks, and an efficient matching algorithm called CGIM (Classed Grouping Index Matching) which employs a dynamic re-grouping scheme.

  • PDF

Searching for Variants Using Trie-Index (트라이 인덱스를 이용한 이형태 검색)

  • Park, In-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1986-1992
    • /
    • 2009
  • A user often searches a data by inputting a variant such as the abbreviation or substring of a word, or a misspelled word. The simple approach to the searching for variants is to build a variants dictionary. However, it entails enormous cost and time and can not handle variants by misspelling. Approximate searching, searching by approximate string matching, is a good approach to the searching. A problem in the approach is that it cannot handle variants by abbreviations. This paper propose a method for searching various variants including abbreviations and misspelled words, by using the trie indexing. First, this paper shows a variant matching method with the calculation of path weighted-metric. In addition, it provides variant searching algorithm to reduce the search time.

An Index-Based Approach for Subsequence Matching Under Time Warping in Sequence Databases (시퀀스 데이터베이스에서 타임 워핑을 지원하는 효과적인 인덱스 기반 서브시퀀스 매칭)

  • Park, Sang-Hyeon;Kim, Sang-Uk;Jo, Jun-Seo;Lee, Heon-Gil
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.173-184
    • /
    • 2002
  • This paper discuss an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, Kim et al. suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multidimensional index using a feature vector as indexing attributes. For query processing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verify the superiority of our approach, we perform extensive experiments. The results reveal that our approach achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.