• Title/Summary/Keyword: Matching and Tracking

Search Result 354, Processing Time 0.029 seconds

Target Identification using the Mahalanobis Distance and Geometric Parameters (마할라노비스 거리와 기하학적 파라메터에 의한 표적의 인식)

  • 이준웅;권인소
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.814-820
    • /
    • 1999
  • We propose a target identification algorithm for visual tracking. Target identification is realized by finding out corresponding line segments to the hypothesized model segments of the target. The key idea is the combination of the Mahalanobis distance with the geometrical relationship between model segments and extracted line segments.

  • PDF

Design of monopulse feeder using corrugated E-plane horn (E-평면 컬러게이트 혼을 이용한 모노펄스 급전기 설계)

  • 이주형;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2099-2108
    • /
    • 1996
  • The performance of the E-plane monopulse feeder is shown to e improved by using corrugated horn and multimode design. The proposed multimode corrugated horn is analyzed by the mode matching technique. an E-plane monopulse feeding horn is designed and fabricated to show the performance of the multimode corrugated horn. The experiment agrees quite well with the thoretical analysis. The results can be used in the design of monopulse type tracking radar antenna.

  • PDF

Advanced Big Data Analysis, Artificial Intelligence & Communication Systems

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.

A Design of Mobile Robot based on Camera and Sound Source Localization for Intelligent Surveillance System (지능형 감시 시스템 구축을 위한 영상과 음원 추적 기반 임베디드 모바일로봇 개발)

  • Park, Jung-Hyun;Kim, Hyung-Bok;Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.532-537
    • /
    • 2009
  • The necessity of intelligent surveillance system is gradually considered seriously from the space where the security is important. In this paper, we embodied unmanned intelligent system by developing embedded mobile robot based on images and sounds tracking. For objects tracking, we used block-matching algorithm and for sound source tracking, we calculated time differences and magnitude dissimilarities of sound. And we demonstrated the superiority of intruder tracking algorithm through the embodiment of Pan-Tilt camera and sound source tracking module using system, Network camera and mobile robot using system and mobile robot using system. By linking security system, the suggested system can provide some interfacing functions for the security service of the public facilities as well as that of home.

Reseach for object auto tracking technology using video analysis and BLE device (근거리 무선통신 기기와 영상분석을 이용한 객체추적 기법에 관한 연구)

  • Choung, Kyung-Ho;Park, Jae-Yong;Kim, Jung-Gon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.96-99
    • /
    • 2015
  • 본 논문에서는 중복되지 않는 서로 다른 카메라의 영상을 활용한 동일 객체 판단 및 추적 기술에 대하여 소개한다. 영상분석에서 색상 정보는 가장 기본이 되는 중요한 정보라 할 수 있다. 특히 색상 정보를 이용하는 히스토그램은 일반적으로 추적, 인식 등에 많이 사용되고 있으나 이동 객체나 조도 변화 등에 따라 성능에 차이를 보인다. 이러한 문제점을 해결하고자 본 연구에서는 동일 객체 판단을 위해 대표적으로 사용되는 히스토그램 정합의 두 알고리즘(HSV 공간에서의 Histogram matching 방법과 RGB 공간에서의MCSHR 알고리즘) 결합을 통해 분할 히스토그램은 객체를 3조각으로 나누어 전체와 각각의 히스토그램을 구하며 MCSHR을 RGB공간이 아니 Hue 공간 히스토그램으로 변경하여 유사도를 도출 하였으며 조도 변화에 강인한 모델을 만들기 위해 Controlled equalization기법을 사용하여 원 영상의 히스토그램의 확률과 평활화한 히스토그램의 확률 융합을 시도 하였다. 해당 실험의 비교 결과 기존 HSV공간에서 Histogram matching을 통한 유사도 비교보다 12.9% 향상된 정합율의 결과를 보였다. 또한 영상 정보와 스마트 기기를 통한 인식 방법의 융합을 통해 영상 내에서 동일 객체 판단에 대한 추가 정보 제공에 대해 방법론 적인 부분을 제안 하였다.

  • PDF

Shape Based Framework for Recognition and Tracking of Texture-free Objects for Submerged Robots in Structured Underwater Environment (수중로봇을 위한 형태를 기반으로 하는 인공표식의 인식 및 추종 알고리즘)

  • Han, Kyung-Min;Choi, Hyun-Taek
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.91-98
    • /
    • 2011
  • This paper proposes an efficient and accurate vision based recognition and tracking framework for texture free objects. We approached this problem with a two phased algorithm: detection phase and tracking phase. In the detection phase, the algorithm extracts shape context descriptors that used for classifying objects into predetermined interesting targets. Later on, the matching result is further refined by a minimization technique. In the tracking phase, we resorted to meanshift tracking algorithm based on Bhattacharyya coefficient measurement. In summary, the contributions of our methods for the underwater robot vision are four folds: 1) Our method can deal with camera motion and scale changes of objects in underwater environment; 2) It is inexpensive vision based recognition algorithm; 3) The advantage of shape based method compared to a distinct feature point based method (SIFT) in the underwater environment with possible turbidity variation; 4) We made a quantitative comparison of our method with a few other well-known methods. The result is quite promising for the map based underwater SLAM task which is the goal of our research.

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Tumor Motion Tracking during Radiation Treatment using Image Registration and Tumor Matching between Planning 4D MDCT and Treatment 4D CBCT (치료계획용 4D MDCT와 치료 시 획득한 4D CBCT간 영상정합 및 종양 매칭을 이용한 방사선 치료 시 종양 움직임 추적)

  • Jung, Julip;Hong, Helen
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.353-361
    • /
    • 2016
  • During image-guided radiation treatment of lung cancer patients, it is necessary to track the tumor motion because it can change during treatment as a consequence of respiratory motion and cardiac motion. In this paper, we propose a method for tracking the motion of the lung tumors based on the three-dimensional image information from planning 4D MDCT and treatment 4D CBCT images. First, to effectively track the tumor motion during treatment, the global motion of the tumor is estimated based on a tumor-specific motion model obtained from planning 4D MDCT images. Second, to increase the accuracy of the tumor motion tracking, the local motion of the tumor is estimated based on the structural information of the tumor from 4D CBCT images. To evaluate the performance of the proposed method, we estimated the tracking results of proposed method using digital phantom. The results show that the tumor localization error of local motion estimation is reduced by 45% as compared with that of global motion estimation.

SMTG 알고리즘을 이용한 랜드마크의 고속정합

  • Seo, Seok-Bae;Kang, Chi-Ho
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.230-235
    • /
    • 2005
  • As a precedence research for the COMS(Communication, Oceanic, and Meteorological Satellite), this paper proposes the SMTC(Soble Masked Tracking Guideline) algorighm for a fast landmark matching. The experimental results show that proposed algorithm should recude a lot of calculative time.

  • PDF

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.