Vessels can operate with their Automatic Identification System (AIS) turned off, prompting the development of strategies to identify them. Among these, utilizing satellites to collect radio frequency (RF) data in the absence of AIS has emerged as the most effective and practical approach. The purpose of this study is to develop a matching algorithm for RF with AIS data and find the RF's applicability to classify a suspected ship. Thus, a matching procedure utilizing three RF datasets and AIS data was employed to identify ships in the Yellow Sea and the Korea Strait. The matching procedure was conducted based on the proximity to AIS points, ensuring accuracy through various distance-based sections, including 2 km, 3 km, and 6 km from the AIS-based estimated points. Within the RF coverage, the matching results from the first RF dataset and AIS data identified a total of 798 ships, with an overall matching rate of 78%. In the cases of the second and third RF datasets, 803 and 825 ships were matched, resulting in an overall matching rate of 84.3% and 74.5%, respectively. The observed results were partially influenced by differences in RF and AIS coverage. Within the overlapped region of RF and AIS data, the matching rate ranged from 80.2% to 98.7%, with an average of 89.3%, with no duplicate matches to the same ship.
블록정합에서 방대한 계산을 줄이기 위해, 본 논문은 탐색영역에서 탐색점을 제한하는 고속 블록정합 알고리즘을 제안한다. 대부분의 움직임 벡터가 탐색영역 중심부에 위치하고, 정합오차가 최적의 유사블록을 향해 단조감소한다는 사실에 근거하여 제안된 알고리즘은 단계 사이에 정합패턴을 1 화소 단위로 이동하고, 이전 단계들에서 결정된 유사블록들로부터 최적의 유사블록을 향한 움직임을 예측하고, 탐색점들의 움직임을 움직임 방향에 대해 ${\pm}45^{\circ}C$로 제한한다. 그 결과 불필요한 탐색점을 제거할 수 있었고 블록정합 계산을 줄일 수 있었다. 기존 유사 고속 알고리즘과 비교하여 제안된 알고리즘은 큰 움직임을 갖는 영상에서 미미한 화질 저하를 발생시키지만 보통 움직임을 갖는 영상에서 동등한 화질을 유지하고, 반면에 그들의 블록정합 계산을 적게는 20% 많게는 67%를 줄여 주었다.
스테레오 영상으로부터 수치표고모델을 생성하기 위해서는 일반적으로 두 영상 간의 정합을 수행한다. 정합은 초기 정합 후보점으로부터 시작되며, 두 영상 간의 접합점(Tie-points)이 이러한 초기 후보점 역할을 하게 된다. 이 초기 정합 후보점의 개수와 영상 내에서의 분포는 정합결과에 영향을 준다. 정합결과를 바탕으로 생성되는 수치표고모델에는 에러가 포함된다. 이러한 에러를 제거하는 가장 보편적인 방법은 주변값으로 보간하는 것이다. 본 논문에서는 신뢰성 있는 수치표고모델을 자동으로 생성하기 위해서 기존 수치표고모델을 이용하여 자동으로 추출한 접합점(Tie-points)과 영상 피라미드 그리고 정합 결과에서 발생한 이상값(Outlier)을 기존 수치표고모델로 보정하는 방법을 제안한다. 본 논문에서는 IKONOS, QuickBird, SPOTS 스테레오 영상과 DTED level 2 데이터를 이용하여 실험을 수행했으며, 실험결과를 통해서 제안된 방법으로 생성한 수치표고모델에서는 에러가 모두 제거되었음을 보여준다. 또한 기존 DTED level 2를 참값으로 하여 산출된 높이값에 대한 RMSE는 15m 미만으로, 비교적 정확한 수치표고모델을 생성하였음을 보여준다.
This paper describes an algorithm of pattern analysis of ECG signals by significant points extraction method. The significant points can be extracted by modified zerocrossing method, which method determines the real significant point among the significant point candidates by zerocrossing method and slope rate of left side and right side. This modified zerocrossing method improves the accuracy of detection of real significant point position. This paper also describes the pattern matching algorithm by a hierarchical AND/OR graph of ECG signals. The decomposition of ECG signals by a hierarchical AND/OR graph can make the pattern matching process easy and fast. Furthermore the pattern matching to the significant points reduces the processing time of ECG analysis.
This paper describes an algorithm of pattern analysis of ECG signals by significant points extraction method. The significant points can be extracted by modified zerocrossing method, which method determines the real significant point among the significant point candidates by zerocrossing method and slope rate of left side and right side. This modified zerocrossing method improves the accuracy of detection of real slgnficant polnt Position. This Paper also describes the pattern matching algorithm by a hierarchical AND/OR graph of ECG signals. The decomposition of ECG signals by a hierarchical AND/ OR graph can make the pattern matching process easy and fast, Furthermore the pattern matching to the significant points reduces the processing time of ECG analysis.
This paper presents a method of landmark recognition in indoor environments using a neural-network for an autonomous mobile robot. In order to adapt to image deformation of a landmark resulted from variations of view-points and distances, a multi-labeled template matching(MLTM) method and a dynamic area search method(DASM) are proposed. The MLTM is. used for matching an image template with deformed real images and the DASM is proposed to detect correct feature points among incorrect feature points. Finally a feed-forward neural-network using back-propagation algorithm is adopted for recognizing the landmark.
다중의 영상을 이용하여 하나의 파노라마 영상을 제작하는 기법은 컴퓨터 비전, 컴퓨터 그래픽스 등과 같은 여러 분야에서 널리 연구되고 있다. 파노라마 영상은 하나의 카메라에서 얻을 수 있는 영상의 한계, 즉 예를 들어 화각, 화질, 정보량 등의 한계를 극복할 수 있는 좋은 방법으로서 가상현실, 로봇비전 등과 같이 광각의 영상이 요구되는 다양한 분야에서 응용될 수 있다. 파노라마 영상은 단일 영상과 비교하여 보다 큰 몰입감을 제공한다는 점에서 큰 의미를 갖는다. 현재 다양한 파노라마 영상 제작 기법들이 존재하지만, 대부분의 기법들이 공통적으로 파노라마 영상을 구성할 때 각 영상에 존재하는 특징점 및 대응점을 검출하는 방식을 사용하고 있다. 또한, 대응점을 이용한 RANSAC(RANdom SAmple Consensus) 알고리즘을 사용, Homography Matrix를 구하여 영상을 변환하는 방법을 사용한다. 본 논문에서 사용한 SURF(Speeded Up Robust Features) 알고리즘은 영상의 특징점을 검출할 때 영상의 흑백정보와 지역 공간 정보를 활용하는데, 영상의 크기 변화와 시점 검출에 강하며 SIFT(Scale Invariant Features Transform) 알고리즘에 비해 속도가 빠르다는 장점이 있어서 널리 사용되고 있다. SURF 알고리즘은 대응점 검출 시 잘못된 대응점을 검출하는 경우가 생긴다는 단점이 존재하는데 이는 RANSAC 알고리즘의 수행속도를 늦추며, 그로인해 CPU 사용 점유율을 높이기도 한다. 대응점 검출 오류는 파노라마 영상의 정확성 및 선명성을 떨어뜨리는 핵심 요인이 된다. 본 논문에서는 이러한 대응점 검출의 오류를 최소화하기 위하여 대응점 좌표 주변 $3{\times}3$ 영역의 RGB값을 사용하여 잘못된 대응점들을 제거하는 중간 필터링 과정을 수행하고, 문제해결을 시도하는 동시에 파노라마 이미지구성 처리 속도 및 CPU 사용 점유율 등의 성능 향상 결과와 추출된 대응점 감소율, 정확도 등과 관련한 분석 및 평가 결과를 제시하였다.
본 논문에서는 손에 든 비디오 카메라로 촬영한 영상을 결합하여 대형 고해상도 영상을 생성하는 모자익 기법에 관해 기술한다. 기존의 특징점 기반 대응점 검색 기법들이 사람의 개입에 의해 영상을 정합하거나, 형태정보만 이용하는 방법을 사용 하는 것과는 달리 형태정보와 칼라정보를 모두 사용하여 사람의 개입이 없이 자동으로 정확한 중첩영역을 검색하는 방법을 제안한다. 제안한 방법은 인접하는 영상 간에 빠른 속도로 대응점을 추정하여 영상간의 초기 변환관계를 계산하는 보로노이 거리(Voronoi Distance)정합법을 이용하여 비슷한 형태를 가진 후보 영역들을 추출한 다음, 칼라 정보를 이용하여 최종 중첩영역을 찾는다. 이것은 영상내의 특징점을 기준으로 특징점 사이의 거리가 동일하도록 기준영상의 보로노이 평면(Voronoi Surface)을 생성하고 입력영상과 기준 영상간의 정합 부분에서 누적된 보로노이 거리를 최소화하는 대응점을 이항검색 기법으로 추출하는 방법이다. 추출된 계산된 초기 변환행렬은 Levenberg-Marquadt 방법을 통해 최적 변환행렬로 수정되고 이 변환행렬에 의해 영상이 합성되어진다.
본 논문에서는 최종 변이영상의 정확도를 높이기 위해 영상의 특징점을 이용한 적응적 가변 정합창 방법과 교차 일치성 검사의 신뢰도를 높이는 방법을 제안한다. 제안한 적응적 가변 정합창 방법은 색상정보를 이용하여 영상을 분할하고 분할된 각 영상의 특징점을 찾아 그 특징점들의 유무에 따라 정합창의 크기를 적응적으로 가변시키는 방법이다. 또한 제안한 교차 일치성 검사 방법은 최적의 변이와 차상위 최적의 변이에 대한 비용함수 값들을 비교하여 비용하수 값 자체가 너무 크거나 두 비용함수의 차이가 너무 적은 경우를 찾아내어 처리하는 방법이다. 제안한 두 방법에 대한 Middleburry에서 제공한 네 가지 실험영상을 대상으로 실험한 결과 적응적 가변 정합창 방법은 최대 18.2%의 오차율을 감소시켰다. 또한 제안한 교차 일치성 검사는 최대 7.4%의 신뢰도를 향상시킨 것으로 나타났다.
SURF(Speeded Up Robust Features)는 다양한 상태 변화에 강인한 기술자 추출 방법으로 객체 인식과 같은 분야에서 유용하게 사용되는 알고리즘이다. 이 알고리즘은 대표적인 특징점 추출 알고리즘인 SIFT(Scale Invariant Feature Transform)와 비슷한 성능을 보이면서도 수행 시간이 훨씬 빠르다는 장점이 있다. 하지만 이러한 기술자들은 회전 불변한 특징 보장을 위해서, 추출한 특징점 간의 위치 정보를 고려하지 않는다. 또한, 원본 영상을 흑백 영상으로 변환하여 사용하기 때문에, 원본 이미지의 색상 정보도 이용하지 않는다. 본 논문에서는 특징점들 간의 상대적인 위치 정보 및 색상 정보를 이용하여 SURF 기술자의 정합 성능을 개선하는 방안을 제안한다. 상대적인 위치 정보는 특징점들의 중심을 연결하는 선분과 특징점 중심에서부터 생성되는 orientation 선분 사이의 각을 기반으로 한다. 색상 정보의 경우 각 특징점이 포함하고 있는 영역에 대해 color histogram을 생성하여 사용한다. 실험을 통하여 제안된 기법의 성능 개선을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.