• 제목/요약/키워드: Matching Performance

검색결과 1,802건 처리시간 0.035초

분산 환경에서 경로 질의 기반 서브 그래프 탐색 기법 (Subgraph Searching Scheme Based on Path Queries in Distributed Environments)

  • 김민영;최도진;박재열;김연동;임종태;복경수;최한석;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제19권1호
    • /
    • pp.141-151
    • /
    • 2019
  • 개체 간의 상호 작용을 나타내기 위해 그래프 데이터 형태의 네트워크가 많은 애플리케이션에서 사용되고 있다. 최근에는 빅데이터 기술의 발달로 처리해야할 네트워크의 크기가 점점 커짐에 따라 하나의 서버에서 이를 처리하기 어려워졌기 때문에 분산 처리의 필요성 또한 증가하고 있다. 본 논문에서는 이러한 그래프 데이터가 분산 저장되어있는 환경에서 서브 그래프 탐색을 효율적으로 수행하기 위한 분산 처리시스템을 제안한다. 불필요한 탐색을 줄이기 위해 데이터의 통계정보를 활용해 확률적인 스코어링을 통해 탐색 순서를 정한다. 그래프 네트워크의 정점과 차수의 관계는 데이터의 종류에 따라 다른 특성을 보일 수 있기 때문에 여러 분포적 특성을 갖는 그래프에 대해 다른 스코어링 방법을 통해 불필요한 탐색을 줄이기 위한 스코어를 계산하여 탐색 순서를 결정한다. 결정된 순서에 따라 그래프가 분산 저장된 서버에서 순차적으로 탐색한다. 성능평가에서는 제안하는 기법의 우수성을 입증하기 위해 기존 기법과의 비교를 수행하였으며, 그 결과 기존 기법보다 탐색 시간이 약 3~10% 향상됨을 보였다.

선레이저 기반 이동체용 3차원 노면 모니터링 시스템 구현 (Implementation of 3D Road Surface Monitoring System for Vehicle based on Line Laser)

  • 최승호;김서연;김태식;민홍;정영훈;정진만
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.101-107
    • /
    • 2020
  • 노면측정은 노면 관리에서 노면의 평탄화된 정도 및 변위를 정량화하는 필수적인 과정이다. 보다 안전한 노면 관리 및 신속한 유지보수를 위해 이동체에서의 정밀한 노면 측정은 매우 중요하다. 본 논문에서는 이동체에서 측정가능한 정밀 노면측정 시스템을 제안한다. 제안 노면측정 시스템은 고성능의 선레이저 센서를 사용하여 노면 표면의 정밀한 측정을 지원한다. 또한 RTK로 부터 획득한 위치 데이터를 정합하여 종/횡방향 프로파일 측정이 가능하고 속도기반 적응적인 갱신 알고리즘을 통해 실시간적인 모니터링이 가능하다. 제안 시스템을 평가하기 위하여 Gocator 선레이저 센서, MRP 모듈, 및 NVIDIA Xavier 프로세서를 시험용 이동체에 탑재하여 노면에서 시험하였다. 시험 결과 MSE(mean square error) 기준 정확한 프로파일 측정이 가능함을 보인다. 제안 시스템은 도로의 상태 평가뿐 만 아니라 인접 지반의 영향도 평가에 활용될 수 있다.

라이다 깊이 맵과 이미지를 사용한 자기 조직화 지도 기반의 고밀도 깊이 맵 생성 방법 (Dense-Depth Map Estimation with LiDAR Depth Map and Optical Images based on Self-Organizing Map)

  • 최한솔;이종석;심동규
    • 방송공학회논문지
    • /
    • 제26권3호
    • /
    • pp.283-295
    • /
    • 2021
  • 본 논문은 자기 조직화 지도 기법을 기반으로 라이다 기반으로 생성된 깊이 맵과 컬러 이미지의 정보를 기반으로 고밀도 깊이 맵을 생성하는 방법을 제안한다. 제안하는 깊이 맵 업샘플링 방법은 라이다에서 취득되지 않은 공간에 대한 초기 깊이 예측 단계와 초기 깊이 필터링 단계로 구성된다. 초기 깊이 예측 단계에서는 두 장의 컬러 이미지에 대해 스테레오 매칭을 수행하여 초기 깊이 값을 예측한다. 깊이 맵 필터링 단계에서는 예측된 초기 깊이 값의 오차를 감소시키고자 예측 깊이 픽셀에 대하여 주변의 실측 깊이 값을 이용하여 자기 조직화 지도 기법을 수행한다. 자기 조직화 기법 수행 시 예측 깊이 픽셀과 실측 깊이 픽셀의 거리와, 각 픽셀에 대응되는 컬러 값의 차이에 따라 가중치를 결정한다. 본 논문에서는 성능 비교를 위하여 깊이 맵 업샘플링 방법으로 널리 사용되고 있는 양방향 필터 및 k-최근접 이웃 알고리즘과 비교를 진행하였다. 제안하는 방법은 양방향 필터 방법 및 k-최근접 이웃 알고리즘 대비 MAE 관점에서 각각 약 6.4%, 8.6%이 감소하였고 RMSE 관점에서 각각 약 10.8%, 14.3%이 감소하였다.

WhiteList 기반의 악성코드 행위분석을 통한 악성코드 은닉 웹사이트 탐지 방안 연구 (Research on Malicious code hidden website detection method through WhiteList-based Malicious code Behavior Analysis)

  • 하정우;김휘강;임종인
    • 정보보호학회논문지
    • /
    • 제21권4호
    • /
    • pp.61-75
    • /
    • 2011
  • 최근 DDoS공격용 좀비, 기업정보 및 개인정보 절취 등 각종 사이버 테러 및 금전적 이윤 획득의 목적으로 웹사이트를 해킹, 악성코드를 은닉함으로써 웹사이트 접속PC를 악성코드에 감염시키는 공격이 지속적으로 증가하고 있으며 은닉기술 및 회피기술 또한 지능화 전문화되고 있는 실정이다. 악성코드가 은닉된 웹사이트를 탐지하기 위한 현존기술은 BlackList 기반 패턴매칭 방식으로 공격자가 악성코드의 문자열 변경 또는 악성코드를 변경할 경우 탐지가 불가능하여 많은 접속자가 악성코드 감염에 노출될 수 밖에 없는 한계점이 존재한다. 본 논문에서는 기존 패턴매칭 방식의 한계점을 극복하기 위한 방안으로 WhiteList 기반의 악성코드 프로세스 행위분석 탐지기술을 제시하였다. 제안방식의 실험 결과 현존기술인 악성코드 스트링을 비교하는 패턴매칭의 MC-Finder는 0.8%, 패턴매칭과 행위분석을 동시에 적용하고 있는 구글은 4.9%, McAfee는 1.5%임에 비해 WhiteList 기반의 악성코드 프로세스 행위분석 기술은 10.8%의 탐지율을 보였으며, 이로써 제안방식이 악성코드 설치를 위해 악용되는 웹 사이트 탐지에 더욱 효과적이라는 것을 증명할 수 있었다.

텍스트 마이닝과 딥러닝을 활용한 암호화폐 가격 예측 : 한국과 미국시장 비교 (The Prediction of Cryptocurrency on Using Text Mining and Deep Learning Techniques : Comparison of Korean and USA Market)

  • 원종관;홍태호
    • 지식경영연구
    • /
    • 제22권2호
    • /
    • pp.1-17
    • /
    • 2021
  • 본 연구에서는 한국과 미국의 대표적인 거래소인 빗썸과 코인베이스의 비트코인 가격을 ARIMA와 순환 신경망(Recurrent Neural Network)을 이용해 예측하고, 이후 각 국가의 뉴스 기사를 이용해 분리 학습에 기반한 separated RNN 모형을 제안한다. separated RNN 모형은 학습 데이터를 가격의 추세 변화 점을 기준으로 분리해 학습시킨 후, 추세 변화점 별 뉴스 데이터를 활용해 용어 기반 사전을 구축한다. 이후 용어 기반 사전과 평가 데이터 기간의 뉴스 데이터를 이용해 예측할 데이터의 가격 추세 변화 점을 찾아낸 후, 매칭되는 모형을 적용해 예측 결과를 산출한다. 2017년 5월 22일부터 2020년 9월 16일까지의 가격 데이터를 사용해 분석한 결과, 제안된 separated RNN을 이용해 예측한 결과가 한국과 미국의 비트코인 가격 예측 모두에서 순환 신경망(RNN)을 이용해 예측한 결과보다 높은 예측 성과를 보였다. 본 연구는 시계열 예측 기법의 한계를 뉴스 데이터를 이용한 추세 변화 점 탐색을 통해 극복할 수 있고, 성과 향상을 위한 추후 다양한 시계열 예측 기법 및 추세 변화 점 탐색을 위한 다양한 텍스트 마이닝 기법을 적용해볼 필요가 있음을 시사한다.

EF 센서기반 손동작 신호 감지 및 자동 프레임 추출 (EF Sensor-Based Hand Motion Detection and Automatic Frame Extraction)

  • 이훈민;정선일;김영철
    • 스마트미디어저널
    • /
    • 제9권4호
    • /
    • pp.102-108
    • /
    • 2020
  • 본 논문에서는 사람의 손동작에 의해 모바일장치상의 전기장센서를 통해 감지되는 동작신호의 실시간 검출 및 프레임 추출 알고리즘을 제안한다. 동작인식에 사용되는 전기장센서는 주변 환경 및 시점에 따라 랜덤잡음 및 센서 표면의 초기 대전상태의 가변적인 특성으로 인해 안정적으로 동작신호를 검출하는데 어려움이 있다. 본 논문에서는 이와 같은 환경에서도 안정적이고 강건하게 동작신호를 감지하여 검출할 수 있는 동적문턱치 방법(dynamic thresholding method)을 제안한다. 동작발생감지여부는 10Hz low-pass 필터와 MA(Motion Average) 필터를 통한 입력신호가 특정 문턱 전압값을 넘을 경우 감지되는데 감지 시점 센서상의 정전하상태가 가변적이므로 주기적으로 offset 값을 계산하여 새로운 문턱치를 동적으로 적용하는 방법이다. 이러한 방법으로 동작신호 감지율을 98% 이상으로 향상 시킬 수 있었다. 또한 일단 동작이 감지되면 정문턱치(positive thresold)와 부문턱치(negative threshold)의 통과시점, 횟수와 평균 동작주기를 고려한 동작신호프레임 알고리즘을 제안하였으며 이의 프레임추출 성공률도 98% 이상의 성능을 보였다. 본 논문에서 제안한 알고리즘으로 추출된 동작신호는 이후 신호정규화를 거쳐 LSTN 심층신경망 인식부를 거쳐 높은 손동작 인식률을 보임으로서 제안된 알고리즘의 우수함을 입증하였다.

Unstable Pathologic Vertebral Fractures in Multiple Myeloma : Propensity Score Matched Cohort Study between Reconstructive Surgery with Adjuvant Radiotherapy and Radiotherapy Alone

  • Park, Hyung-Youl;Kim, Young-Hoon;Ahn, Joo-Hyun;Ha, Kee-Yong;Kim, Sang-Il;Jung, Jae-Woong
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권2호
    • /
    • pp.287-296
    • /
    • 2022
  • Objective : Although radiotherapy (RT) is recommended for multiple myeloma (MM) involving spine, the treatment of choice between reconstructive surgery with RT and RT alone for pathologic vertebral fractures (PVFs) associated with structural instability or neurologic compromises remains controversial. The purpose of this study was to evaluate the clinical efficacies of reconstructive surgery with adjuvant RT for treatment of MM with PVFs by comparing with matched cohorts treated with RT alone. Methods : Twenty-eight patients underwent reconstructive surgery followed by RT between 2008 and 2015 in a single institution, for management of PVFs associated with structural instability of the spine and/or neurologic compromises (group I). Twenty-eight patients were treated with RT alone (group II) after propensity score matching in a 1-to-1 format based on instability of the spine, as well as age and performance. Clinical outcomes including the overall survival rates, duration of independent ambulation, neurological status, and numeric rating scale (NRS) for back pain were compared. Results : Clinical and radiological features before treatment were similar in both groups. The median survival period was similar between the two groups. However, the mean duration of independent ambulation was significantly longer in group I (88.8 months; 95% confidence interval [CI], 66.0-111.5) than in group II (39.4 months; 95% CI, 25.2-53.6) (log rank test; p=0.022). Deterioration of Frankel grade (21.4% vs. 60.7%, p=0.024) and NRS for back pain (2.7±2.2 vs. 5.0±2.7, p=0.000) at the last follow-up were higher in the group II. Treatment-related complications were similar in both groups. Conclusion : In patients with unstable PVFs due to MM, reconstructive surgery may yield superior clinical outcomes compared with RT alone in maintaining independent ambulation and neurological status, as well as pain control despite similar median survival and complications.

주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법 (Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity)

  • 김혜진;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.299-306
    • /
    • 2022
  • 최근 로봇이나 설비, 회로 등에 센서 내장이 보편화 되고, 측정된 센서 데이터를 학습하여 기기의 고장을 진단하기 위한 연구가 활발하게 수행되고 있다. 이러한 고장 진단 연구는 고장 상황이나 종류를 예측하기 위한 분류(Classification) 모델 개발과 정량적으로 고장 상황을 예측하기 위한 회귀(Regression) 모델 개발로 구분된다. 분류 모델의 경우, 단순히 고장이나 결함의 유무(Class)를 확인하는 반면, 회귀 모델은 무수히 많은 수치 중에 하나의 값(Value)을 예측해야 하므로 학습 난이도가 더 높다. 즉, 입력과 출력을 대응시켜 고장을 예측을 할 때, 유사한 입력값이 동일한 출력을 낸다고 결정하기 어려운 불규칙한 상황이 다수 존재하기 때문이다. 따라서 본 논문에서는 주기성을 지닌 입출력 데이터에 초점을 맞추어, 입출력 관계를 분석하고, 슬라이딩 윈도우 기반으로 입력 데이터를 패턴화 하여 입출력 데이터 간의 규칙성을 확보하도록 한다. 제안하는 방법을 적용하기 위해, 본 연구에서는 MMC(Modular Multilevel Converter) 회로 시스템으로부터 주기성을 지닌 전류, 온도 데이터를 수집하여 ANN을 이용하여 학습을 진행하였다. 실험 결과, 한 주기의 2% 이상의 윈도우를 적용하였을 때, 적합도 97% 이상의 성능이 확보될 수 있음을 확인하였다.

Early Outcomes of Robotic Versus Video-Assisted Thoracoscopic Anatomical Resection for Lung Cancer

  • Park, Ji Hyeon;Park, Samina;Kang, Chang Hyun;Na, Bub Se;Bae, So Young;Na, Kwon Joong;Lee, Hyun Joo;Park, In Kyu;Kim, Young Tae
    • Journal of Chest Surgery
    • /
    • 제55권1호
    • /
    • pp.49-54
    • /
    • 2022
  • Background: We compared the safety and effectiveness of robotic anatomical resection and video-assisted thoracoscopic surgery (VATS). Methods: A retrospective analysis was conducted of the records of 4,283 patients, in whom an attempt was made to perform minimally invasive anatomical resection for lung cancer at Seoul National University Hospital from January 2011 to July 2020. Of these patients, 138 underwent robotic surgery and 4,145 underwent VATS. Perioperative outcomes were compared after propensity score matching including age, sex, height, weight, pulmonary function, smoking status, performance status, comorbidities, type of resection, combined bronchoplasty/angioplasty, tumor size, clinical T/N category, histology, and neoadjuvant treatment. Results: In total, 137 well-balanced pairs were obtained. There were no cases of 30-day mortality in the entire cohort. Conversion to thoracotomy was required more frequently in the VATS group (VATS 6.6% vs. robotic 0.7%, p=0.008). The complete resection rate (VATS 97.8% vs. robotic 98.5%, p=1.000) and postoperative complication rate (VATS 17.5% vs. robotic 19.0%, p=0.874) were not significantly different between the 2 groups. The robotic group showed a slightly shorter hospital stay (VATS 5.8±3.9 days vs. robotic 5.0±3.6 days, p=0.052). N2 nodal upstaging (cN0/pN2) was more common in the robotic group than the VATS group, but without statistical significance (VATS 4% vs. robotic 12%, p=0.077). Conclusion: Robotic anatomical resection in lung cancer showed comparable early outcomes when compared to VATS. In particular, robotic resection presented a lower conversion-to-thoracotomy rate. Furthermore, a robotic approach might improve lymph node harvesting in the N2 station.

밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구 (A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces)

  • 정재영;김유진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권2호
    • /
    • pp.85-92
    • /
    • 2023
  • 코로나바이러스감염증-19와 같은 호흡기 감염병은 주로 밀집/밀폐/밀접 공간인 실내에서 일어난다. 호흡기 감염병 이상징후의 존재 여부는 발열, 기침, 재채기 및 호흡곤란 등의 초기 증상을 통해 판단되고 있으며, 이러한 초기 증상에 대한 상시 모니터링이 요구된다. 열화상 온도 스크리닝 시스템은 개인의 피부 온도 상승의 징후가 있는지 초기에 선별하는 빠르고 쉬운 비접촉 스크리닝 방법을 제공하지만, 측정 타겟, 주변 온도 등의 측정 환경과 피 측정대상과의 측정 거리에 따른 오차로 인해 정확한 온도측정이 어렵다. 그리고 국제표준 IEC 80601-2-59 에서는 내안각(Inner Canthus) 인접한 영역에 대한 안면 열화상 촬영을 권고하고 있다. 본 논문에서는 가시광 카메라 모듈과 열화상 카메라 모듈에 대해서 이미지 일치화 보정을 수행하였으며, 흑체(Blackbody)를 이용해 측정 환경에 대한 열화상 카메라 모듈 온도를 보정하였다. 표준에서 권고하는 측정 타겟을 인식하기 위해 딥러닝 기반 객체 인식 알고리즘과 내안각 인식 모델을 개발하였으며, 100명의 실험자군에 대한 데이터셋을 적용하여 인식 모델 정확도를 도출하였다. 또한 라이다 모듈을 이용한 객체 거리 측정과 선형회귀 보정 모듈을 통해 측정 거리에 따른 오차를 보정하였다. 제안한 모델의 성능 측정을 위해 모터 스테이지, 열화상 온도 스크리닝 시스템, 흑체로 구성된 실험환경을 구축하였으며, 1m에서 3.5m 사이 가변 거리에 따른 온도측정 결과 0.28℃ 이내의 오차 정확도를 확인하였다.