Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.646-647
/
2022
Multiview stereo (MVS) 3D reconstruction of a scene from images is a fundamental computer vision problem that has been thoroughly researched in recent times. Traditionally, MVS approaches create dense correspondences by constructing regularizations and hand-crafted similarity metrics. Although these techniques have achieved excellent results in the best Lambertian conditions, traditional MVS algorithms still contain a lot of artifacts. Therefore, in this study, we suggest using a transformer network to accelerate the MVS reconstruction. The network is based on a transformer model and can extract dense features with 3D consistency and global context, which are necessary to provide accurate matching for MVS.
Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.
Compressive sensing (CS) is a newly developed data acquisition and processing technique that takes advantage of the sparse structure in signals. Normally signals in their primitive space or format are reconstructed from their compressed measurements for further treatments, such as modal analysis for vibration data. This approach causes problems such as leakage, loss of fidelity, etc., and the computation of reconstruction itself is costly as well. Therefore, it is appealing to directly work on the compressed data without prior reconstruction of the original data. In this paper, a direct approach for modal analysis of damped systems is proposed by decomposing the compressed measurements with an appropriate dictionary. The damped free vibration function is adopted to form atoms in the dictionary for the following sparse decomposition. Compared with the normally used Fourier bases, the damped free vibration function spans a space with both the frequency and damping as the control variables. In order to efficiently search the enormous two-dimension dictionary with frequency and damping as variables, a two-step strategy is implemented combined with the Orthogonal Matching Pursuit (OMP) to determine the optimal atom in the dictionary, which greatly reduces the computation of the sparse decomposition. The performance of the proposed method is demonstrated by a numerical and an experimental example, and advantages of the method are revealed by comparison with another such kind method using POD technique.
The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.
Proceedings of the Korean Society of Computer Information Conference
/
2018.07a
/
pp.389-390
/
2018
본 논문에서는 3차원 복원을 위한 특징점 추출 및 매칭에 대한 보다 정확한 방법을 제안한다. 이 방법은 컴퓨터 비전의 기본이 되는 분야로 복원뿐 만 아니라 SLAM과 같은 지도 작성 및 자율 운행에도 필요한 방법이다. 본 연구는 3차원 물체 복원을 위해서 사용하는 방법 중 하나인 Column space fitting(CSF)을 이용하여 turntable-image data에 적용하여 성능을 평가하여 정확성을 검증을 한다. 오늘날 3D scanner를 이용하여 물체를 3차원 모델을 획득하고 3D프린터를 이용하여 다양한 분야에 적용한다. 그러나 고가의 장비이기 때문에 접근성이 떨어진다. 본 연구는 영상들만을 가지고 기하학적 계산을 통해 3차원 모델을 획득한다. 본 연구결과는 기존의 방법인 KLT 알고리즘과 비교하여 RMSE의 값을 약 5배를 줄이는 성능 향상을 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.144-145
/
2020
본 논문에서는 정밀한 3차원 복원 및 시점 합성을 위해 매칭 비용을 반복적으로 업데이트하는 Generalized Soft 3D Reconstruction (GenSoft3D) 알고리즘을 제안한다. 먼저 다시점 영상들과 카메라 자세정보가 주어지면 GenSoft3D는 볼륨 기반의 다시점 스테레오 매칭 알고리즘으로 시점별 초기 매칭 비용 볼륨 및 시차 맵을 계산한다. 그 후 정제 과정에서 각 시점은 모든 시차 맵을 이용하여 표면 확률 및 가시 확률을 계산한다. 표면 확률은 초기 매칭 비용 업데이트에 사용하며, 가시 확률은 폐색 영역의 정확한 시차를 계산하기 위해 사용된다. 해당 정제 과정을 일정 횟수 반복할 경우 시점별 고정밀의 시차 맵 획득이 가능하다. 또한 시차 맵의 정확도가 향상됨에 따라 정확한 시점 합성이 가능하다.
Example-based super resolution(EBSR) is a method to reconstruct high-resolution images by learning patch-wise correspondence between high-resolution and low-resolution images. It can reconstruct a high-resolution from just a single low-resolution image. However, when it is applied to a text image whose font type and size are different from those of training images, it often produces lots of noise. The primary reason is that, in the patch matching step of the reconstruction process, input patches can be inappropriately matched to the high-resolution patches in the patch dictionary. In this paper, we propose a new patch matching method to overcome this problem. Using an image observation model, it preserves the correlation between the input and the output images. Therefore, it effectively suppresses spurious noise caused by inappropriately matched patches. This does not only improve the quality of the output image but also allows the system to use a huge dictionary containing a variety of font types and sizes, which significantly improves the adaptability to variation in font type and size. In experiments, the proposed method outperformed conventional methods in reconstruction of multi-font and multi-size images. Moreover, it improved recognition performance from 88.58% to 93.54%, which confirms the practical effect of the proposed method on recognition performance.
Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the noninvasive assessment of biological tissues. However, OCT images difficult to analyze due to speckle noise. In this paper, we tested various image processing techniques for speckle removal of human and rabbit cartilage OCT images. Also, we distinguished the images which get with methods of image segmentation for OCT images, and found the most suitable method for segmenting an image. And, we selected image segmentation suitable for OCT before image reconstruction. OCT was a weak point to system design and image processing. It was a limit owing to measure small a distance and depth size. So, good edge matching algorithms are important for image reconstruction. This paper presents such an algorithm, the chamfer matching algorithm. It is made of background for 3D image reconstruction. The purpose of this paper is to describe good image processing techniques for speckle removal, image segmentation, and the 3D reconstruction of cartilage OCT images.
Purpose: Facial tumor excision is a common cause of lower eyelid defect in old patients. Many methods have been introduced for the reconstruction of lower eyelid. However, conventional surgical method can cause various complications like scar, ectropion and unnatural color matching. Thus, we introduce a simple and aesthetically acceptable method for the reconstruction of lower eyelid defect. Methods: Three elderly patients with skin cancer in the unilateral lower eyelid were operated by the new method. Following a wide excision of skin cancer, subcilliary incision of lower blepharoplasty was carried out. Elevated skin flap of lower eyelid was redrapped for the correction of defect and the remnant skin from lateral portion of lower eyelid was used for full thickness skin graft (FTSG) to correct the remaining defect. Results: All grafts survived and color match of the graft was excellent without ectropion. Furthermore, wrinkles of the lower eyelid were improved after the blepharoplasty. Conclusion: Lower eyelid defect resulting from wide excision of malignant tumor in old patients could be reconstructed successfully by modifying the conventional lower eyelid blepharoplasty along with FTSG using the remnant skin.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.