• Title/Summary/Keyword: Mat Layer

Search Result 123, Processing Time 0.024 seconds

A Study on the experimental estimation of substitutability of Fiber Mat for Sand Mat (Fiber Mat 의 Sand Mat 대체가능성평가를 위한 실험적 연구)

  • Lee, Song;Jeong, Yong-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.280-285
    • /
    • 2005
  • At present, there are several problems related with sand mat which is used as a way to accelerate consolidation settlement, act like an underground drainage layer and increase trafficability simultaneously. First of all, the unbalance oft he demand and supply of sand is the one of the biggest problems, which makes not only price advance of sand but also delays a term of total construction work. Secondly, the damage of ecosystem and scenery is triggered by thoughtless sand dredging or mining. So, the need that the sand for sand mat should be replaced with a new environmental friendly material has been increased. Fiber mat may be one of the proper materials that suits the need. Therefore, we intended to compare the drainage properties of sand mat with those of fiber mat by experimental model tests. On the basis of the test results, fiber mat took shorter period of consolidation than sand mat and it's amount of settlement showed a little bit bigger than the other. In conclusion, the substitutability of fiber mat for sand mat could be placed highly in view of drainage efficiency. Furthermore, when Fiber mat is used, it has an advantage that spoil soil of the construction site or nearby site can be used for the purpose of increasing trafficability in addition to a role of drainage layer.

  • PDF

Application of Atomic Layer Deposition to Electrodes in Solid Oxide Fuel Cells

  • Kim, Eui-Hyeon;Hwang, Heui-Soo;Ko, Myeong-Hee;Bae, Seung-Muk;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.319.1-319.1
    • /
    • 2013
  • Solid oxide fuel cells (SOFCs) have been recognized as one of emerging renewable energy sources, due to minimized pollutant production and high efficiency in operation. The performance of SOFCs is largely dependent on the electrode polarization which involves the oxidation/reduction in cathodes and anodes along with the charge transport of ions and electronic carriers. Atomic layer deposition is based on the alternate chemical surface reaction occurring at low temperatures with high uniformity and superior step coverage. Such features can be extended into the coating of metal oxide and/or metal layer onto the porous materials. In particular, the atomic layer deposition is can manipulated in controlling the charge transport in terms of triple phase boundaries, in order to control artificially the electrochemical polarization in electrodes of SOFC. The current work applied atomic layer deposition of metal oxides intro the electrodes of SOFCs. The corresponding effect was monitored in terms of the electrochemical characterization. The roles of atomic layer deposition in solid oxide fuel cells are discussed towards optimized towards long-term durability at intermediate temperature.

  • PDF

A Study on the Estimating the Mechanical Properties of Three-Layer Particleboard (3층(層) 파티클보드의 기계적(機械的) 성질(性質) 예측(豫測)에 관(關)한 연구(硏究))

  • Park, Hee-Jun;Lee, Phil-Woo;Chung, Ju-Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Mechanical properties of 15 mm thick, three-layer particleboard were studied by varying resin content, specific gravity, mat moisture content, pressing time and pressing temperature. Based on the results of the study, Multiple regression models were developed to estimate the mechanical properties of three-layer particleboard. The results of this study showed the mechanical properties of particleboard were highly related with resin content. specific gravity and mat moisture content in decending order. The mechanical properties were able to estimated as the linear function of resin content and specific gravity. However, the effects of change in mat moisture content on the mechanical properties showed a non-linear pattern. The mechanical properties curves over mat moisture content reached peaks at 15 %, and then decreased at 18 % and 21 % of mat moisture contents. On the other hand, the effects of pressing time and pressing temperature on the mechanical properties of particleboard were not significant.

  • PDF

An Experimental Verification on the Efficiency of Geosynthetics on Crushed Stone Layer (쇄석배수층에 적용된 토목섬유의 효율성에 대한 실험적 검증)

  • Park, Min-Cheol;Im, Eun-Sang;Kim, Jae-Hong;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.17-27
    • /
    • 2013
  • This study is to prove the efficiency of geo-synthetics on the crushed stone layer by experiments. The strength of PET mat as reinforcing soft ground was verified through the loading experiments. Also, PP mat was used to protect the blockage of crushed stone layer by the filled soil, whose efficiency was examined according to loading and infiltration conditions. The crushed stones were penetrated into clay layer if the PET mat was removed, which was verified by loading experiments. In addition, the cohesioness of soil without PP mat made the blockage of stone layer easily, which reduced the infiltration capacity by about 98%.

An Experimental Study for Substitutability of Sand Mat with Fiber Mat (Fiber Mat의 Sand Mat 대체가능성평가를 위한 실험적 연구)

  • Lee Song;Jeong Yong-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.225-230
    • /
    • 2005
  • At present, there are several problems related with sand mat which is used as a way to accelerate consolidation settlement, to act like an underground drainage layer and to increase trafficability simultaneously. First of all, the unbalance of the demand and supply of sand is one of the biggest problems, which causes not only price rise but also delay of the term of the total construction work. Secondly, the damage of ecosystem and scenery is triggered by thoughtless sand dredging or mining. So, the need that sand mat should be replaced with a new environmentally friendly material has been increased. Fiber mat may be one of the proper materials that suits the need. Therefore, we intended to compare the drainage properties of sand mat with those of fiber mat by experimental model tests. On the basis of the test results, fiber mat took shorter period of consolidation than sand mat and the amount of settlement in the farmer showed a little bit bigger than in the latter. As a conclusion, the substitutability of sand mat with fiber mat could be placed highly in view of drainage efficiency. Furthermore, when fiber mat is used, it has an advantage that spoiled soil of the construction site or nearby site can be used for the purpose of increasing trafficability in addition to a role of drainage layer.

Soluble fraction from silk mat induced bone morphogenic protein in RAW264.7 cells

  • Kim, Seong-Gon;Jo, You-Young;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.41 no.2
    • /
    • pp.51-55
    • /
    • 2020
  • The objective of this study was to evaluate the changes in gene expression after incubation of cells with soluble fraction from different silk mat layers. A silk cocoon from Bombyx mori was separated into 4 layers of equal thickness. The layers were numbered from 1 to 4 (from the inner to outer layer). Each silk mat was placed into normal saline and collected soluble fraction. They were administered to RAW264.7 cells, and changes in the expression of genes were evaluated by cDNA microarray analysis. Layer 1 and 4 groups showed significantly higher expression of BMP-2 at 8 h after administration of soluble fraction (P < 0.05). Runx2 expression was significantly higher in Layer 4 group at 8h (P < 0.05). The silk mat from the innermost and outermost portion of the silkworm cocoon showed a significant change in the expression of genes that are associated with osteoinduction such as BMP-2 and runx2.

Forming Phases and corrsion properties of Nitride layer During the Ion Nitriding for AISI 304 Stainless Steels (AISI 304 스테인리스 강의 이온질화에 의한 질화성의 생성 상과 부식특성)

  • Shin, D. H.;Choi, W.;Lee, J. H.;Kim, H. J.;Nam, S. E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 1998
  • In this study, the behaviorof ion nitriding of AISI 304 stainless steel was investigated using plasma ion nitriding system. The characteristics of ion nitriding, and their micsoctrucyures, and physical properties were investigated as a function of process parmeteds. important conclusions can be summarzied as follows. Firstly, it was found that growth of nitride layer in ion nitriding are mainly affected by N2 partial pressures and nitriding temperatures for AISI 304 stainless steel. The $N_2$<\TEX> partial pressure plays on important role in ion nitriding since it determiness the incoming flux of nitrogen species onto specimen surface. Nitriding thmprrature is also important besauseit determines the diffusion rates of nitrogen through nitride layers. While both parameters affects the characteristics rateding are controlled by nitridingen diffusion nitration profiles of N and alloying elements such as Cr and Ni are observed through niride layers. Secondly, nitride layer consists of the upper white laywe having various nitride phases and the underneath diffusion layers. The thickness of white layer increases with $N_2$<\TEX> partial pressures and nitriding temperatures. The thinkness of diffusion layer is increasting nitriding temperatures. Finally, nitriding of stainless steels steel show slighly low their corrsionce prorerties. However, passivation properties, which is normally observed in stainless steels, were still observed aftre ion nitriding.

  • PDF

An Experimental Study on Solidifying Mat of System Improving for Durability Improving (고화매트의 내구성 향상을 위한 시스템 개선의 실험적 연구)

  • Hong, Sung-Rog;Lee, Jung-Yoon;Kim, Young-Sam;Park, Hun-Il;Cho, Byoung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.108-109
    • /
    • 2014
  • The purpose of this study is to enhance durability of solidifying mat. solidifying mat excellent mechanical properties of geotextile. multi-layer coating system is applied to the mat and the chloride ions penetration resistance, chemical resistance, accelerated carbonation test were evaluated by testing the durability. Durability test results are as follows. chloride ions penetration resistance results are coated mat is approximately 70 % lower than plain. chemical resistance test results are coated mat no discoloration. accelerated carbonation test results are coated mat is approximately 90 % lower than the plain.

  • PDF