• Title/Summary/Keyword: Master production planning

Search Result 29, Processing Time 0.023 seconds

Production planning in fish farm (어류양식장 생산계획에 관한 연구)

  • EH, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.3
    • /
    • pp.129-141
    • /
    • 2015
  • Because land based aquaculture is restricted by high investment per rearing volume and control cost, good management planning is important in Land-based aquaculture system case. In this paper master production planning was made to decide the number of rearing, production schedule and efficient allocation of water resources considering biological and economic condition. The purpose of this article is to build the mathematical decision making model that finds the value of decision variable to maximize profit under the constraints. Stocking and harvesting decisions that are made by master production planning are affected by the price system, feed cost, labour cost, power cost and investment cost. To solve the proposed mathematical model, heuristic search algorithm is proposed. The model Input variables are (1) the fish price (2) the fish growth rate (3) critical standing corp (4) labour cost (5) power cost (6) feed coefficient (7) fixed cost. The model outputs are (1) number of rearing fish (2) sales price (3) efficient allocation of water pool.

Discrete Event Simulation for the Initial Capacity Estimation of Shipyard Based on the Master Production Schedule (대일정 생산 계획에 따른 조선소 생산 용량의 초기 평가를 위한 이산사건 시뮬레이션)

  • Kim, Kwang-Sik;Hwang, Ho-Jin;Lee, Jang-Hyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.111-122
    • /
    • 2012
  • Capacity planning plays an important role not only for master production plan but also for facility or layout design in shipbuilding. Product work breakdown structure, attributes of production resources, and production method or process data are associated in order to make the discrete event simulation model of shipyard layout plan. The production amount of each process and the process time is assumed to be stochastic. Based on the stochastic discrete event simulation model, the production capacity of each facility in shipyard is estimated. The stochastic model of product arrival time, process time and transferring time is introduced for each process. Also, the production capacity is estimated for the assumed master production schedule.

Development of production planning system for shipbuilding using component-based development framework

  • Cho, Sungwon;Lee, Jong Moo;Woo, Jong Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.405-430
    • /
    • 2021
  • Production planning is a key part of production management of manufacturing enterprises. Since computerization began, modern production planning has been developed starting with Material Requirement Planning (MRP), and today Enterprise Resource Planning (ERP), Advanced Planning and Scheduling (APS), Supply Chain Management (SCM) has been spreading and advanced. However, in the shipbuilding field, rather than applying these general-purpose production planning methodologies, in most cases, each shipyard has developed its own production planning system. This is because the applications of general-purpose production planning methods are limited due to the order-taking industry such as shipbuilding with highly complicated construction process consisting of millions of parts per ship. This study introduces the design and development of the production planning system reflecting the production environment of heavy shipyards in Korea. Since Korean shipyards such as Hyundai, Daewoo and Samsung build more than 10 ships per year (50-70 ships in the case of large shipyards), a planning system for the mixed production with complex construction processes is required. This study draws requirements using PI/BPR (process innovation and business process reengineering) methodology to develop a production planning system for shipyards that simultaneously build several ships. Then, CBD software development methodology was applied for the design and implementation of planning system with drawn requirements. It is expected that the systematic development procedure as well as the requirements and functional elements for the development of the shipyard production planning system introduced in this study will be able to present important guidelines in the related research field of shipbuilding management.

A Systematic Approach Of Construction Management Based On Last Planner System And Its Implementation In The Construction Industry

  • Hussain, SM Abdul Mannan;Sekhar, Dr.T.Seshadri;Fatima, Asra
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.2
    • /
    • pp.11-15
    • /
    • 2015
  • The Last PlannerSystem (LPS) has been implemented on construction projects to increase work flow reliability, a precondition for project performance againstproductivity and progress targets. The LPS encompasses four tiers of planning processes:master scheduling, phase scheduling, lookahead planning, and commitment / weeklywork planning. This research highlights deficiencies in the current implementation of LPS including poor lookahead planning which results in poor linkage between weeklywork plans and the master schedule. This poor linkage undetermines the ability of theweekly work planning process to select for execution tasks that are critical to projectsuccess. As a result, percent plan complete (PPC) becomes a weak indicator of project progress. The purpose of this research is to improve lookahead planning (the bridgebetween weekly work planning and master scheduling), improve PPC, and improve theselection of tasks that are critical to project success by increasing the link betweenShould, Can, Will, and Did (components of the LPS), thereby rendering PPC a betterindicator of project progress. The research employs the case study research method to describe deficiencies inthe current implementation of the LPS and suggest guidelines for a better application ofLPS in general and lookahead planning in particular. It then introduces an analyticalsimulation model to analyze the lookahead planning process. This is done by examining the impact on PPC of increasing two lookahead planning performance metrics: tasksanticipated (TA) and tasks made ready (TMR). Finally, the research investigates theimportance of the lookahead planning functions: identification and removal ofconstraints, task breakdown, and operations design.The research findings confirm the positive impact of improving lookaheadplanning (i.e., TA and TMR) on PPC. It also recognizes the need to perform lookaheadplanning differently for three types of work involving different levels of uncertainty:stable work, medium uncertainty work, and highly emergent work.The research confirms the LPS rules for practice and specifically the need to planin greater detail as time gets closer to performing the work. It highlights the role of LPSas a production system that incorporates deliberate planning (predetermined andoptimized) and situated planning (flexible and adaptive). Finally, the research presents recommendations for production planningimprovements in three areas: process related, (suggesting guidelines for practice),technical, (highlighting issues with current software programs and advocating theinclusion of collaborative planning capability), and organizational improvements(suggesting transitional steps when applying the LPS).

A Study on the Development and Application of a Small Shipyard Customized Production Process Planning and Management System (소형조선소 맞춤형 생산공정 계획관리 시스템 개발 및 적용에 관한 연구)

  • Kim, Young-Hun;Hong, Min-Jong;Baek, Seung-Ju;Lee, Won-Seok;Jo, Yong-Hwa;Lee, Dae-Hyung;Lee, Hoon-Sick;Na, Sung-Tae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2022
  • In general, since the types and types of ships, so complex and various variables are included to measure the amount of construction work. In addition, it is mot easy to predict the schedule or the number of working hours before ship construction, and it is also mostly inaccurate. As a result, the master plan is manually drawn up by the expert's experience, but there are limitations due to various factors. Medium and large shipyards are operating APS(Advanced Planning and Scheduling) system that reflects industrial characteristics to improve productivity in the planning stage, and utilize information from systems such as ERP(Enterprise Resource Planning) system and MES (Manufacturing Execution System). On the other hand, small shipyards rely mostly on manual work such as Excel work based on the experience of the workers. Therefore, this study intends to develop a master plan management system that can efficiently manage the production process from the business planning stage in consideration of the characteristics of small shipyards.

A Study of Master Production Scheduling Scheme in TFT-LCD Factory considering Line Balancing (TFT-LCD 공장의 라인 밸런싱을 고려한 MPS 수립에 관한 연구)

  • Won, Dae-Il;Baek, Jong-Kwan;Kim, Sung-Shick
    • IE interfaces
    • /
    • v.16 no.4
    • /
    • pp.463-472
    • /
    • 2003
  • In this study we consider the problem of MPS(master production planning) of TFT-LCD(Thin Film Transistor - Liquid Crystal Display) production factory. Due to the complexities of the TFT-LCD production processes, it is difficult to build effective MPS. This study presents an algorithm having a concept of IDPQ(Ideal Daily Production Quantity) that considers line balancing of TFT-LCD production process. In general, the MPS building procedure does not consider line balancing in non-bottleneck processes. MPS without considering line balancing may make ineffective schedule. We present algorithms for building MPS considering factory capacity and line balancing according to the sales order.

A Case Study on Application of Dispatching Rule-Based Advanced Planning and Scheduling (APS) System (디스패칭 룰 기반의 Advanced Planning and Scheduling (APS) 시스템 활용 사례연구)

  • Lee, Jae-yong;Shin, Moonsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.78-86
    • /
    • 2015
  • Up-to-date business environment for manufacturers is very complex and rapidly changing. In other words, companies are facing a variety of changes, such as diversifying customer requirements, shortening product life cycles, and switching to small quantity batch production. In this situation, the companies are introducing the concept of JIT (just-in-time) to solve the problem of on-time production and on-time delivery for survival. Though many companies have introduced ERP (enterprise resource planning) systems and MRP (material requirement planning) systems, the performance of these systems seems to fall short of expectations. In this paper, the case study on introducing an APS (advanced planning and scheduling) system based on dispatching rules to a machining company and on finding a method to establish an efficient production schedule is presented. The case company has trouble creating an effective production plan and schedule, even though it is equipped with an MRP-based ERP system. The APS system is applied to CNC (computer numerical control) machines, which are key machines of the case company. The overall progress of this research is as follows. First, we collect and analyze the master data on individual products and processes of the case company in order to build a production scheduling model. Second, we perform a pre-allocation simulation based on dispatching rules in order to calculate the priority of each order. Third, we perform a set of production simulations applying the priority value in order to evaluate production lead time and tardiness of pre-defined dispatching rules. Finally, we select the optimal dispatching rule suitable for work situation of the case company. As a result, an improved production schedule leads to an increase in production and reduced production lead time.

Development of Hierarchical Production Planning and Control System for Mixed-Model Assembly Manufacture-an Application in Refrigerator Factory (혼류 조립 공장을 위한 계층적 생산 계획 및 통제 시스템 개발 - 냉장고 공장 사례)

  • Shin, Hyun-Joon
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.34-42
    • /
    • 2006
  • This paper presents a scheme for a hierarchical production scheduling and control system for a refrigerator factory with mixed model assembly lines. The setting of the factory is as follows. There are three mixed-model assembly lines called main line A, B and C and two batch lines that supply parts to the main lines. For each of the main lines, three work-centers are dedicated to them. The sub-lines and work-centers produce parts in batch type. An incoming production order from the master planner is characterized by its product type, amount, and due date. Under this situation, the proposed scheme has several features to schedule and control the above mentioned factory; 1) select the starting time and the place (assembly line) for an order processing, 2) devise a way to control orders to be processed as scheduled, and 3) reschedule orders when something unexpected happen. Finally, this paper provides a case study where the proposed scheme is applied to.

Extended EPQ Model and Its Applications to MPS and MRP (확장 EPQ 모델과 MPS 및 MRP에의 응용)

  • Kim, Joong In;Kim, Keun Chong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.53-68
    • /
    • 1999
  • 지금까지 전통적인 EPQ(Economic Production Quantity) 모델에서는 생산율이 수요율보다 큰 경우만을 다루어 왔으나, 실제 시장에서는 그 반대로 수요율이 생산율보다 큰 경우도 종종 발생한다. 그러나 이러한 상황에 대한 EPQ 연구는 찾아보기 어려운 실정이다. 따라서 본 논문에서는 수요율이 생산율보다 큰 상황을 고려한 확장된 EPQ 모델(Extended EPQ Model)을 유도하고, 이를 생산재고의 유한보충률 상황(Finite Replenishment Rate Environment)에서의 MPS(Master production Schedule)와 MRP(Material Requirements Planning)에 적용하였다.

  • PDF

A Study of Production Scheduling Scheme in TFT-LCD Factory (TFT-LCD 공장의 생산계획 수립에 관한 연구)

  • Na, Hyeok-Jun;Baek, Jong-Kwan;Kim, Sung-Shick
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.325-337
    • /
    • 2002
  • In this study we consider the problem of production planning of TFT-LCD(Thin Film Transistor - Liquid Crystal Display) production factory. Due to the complexities of the TFT-LCD production processes, it is difficult to schedule the production planning, and the study about automated scheduler is insufficient. In addition, the existing production method is a Push-System to raise the operation rate with expensive equipment, that has the problem to satisfy the due-date. This study presents an algorithm having a concept of Pull-System that satisfies the due-date and considers specialties of TFT-LCD production process. We make MPS(Master Production Schedule) according to the sales order, and present algorithms for scheduling about In/Out plan considering factory capacity, line balancing, material requirement, and inventory level of all Array, Cell, and Module processes. These algorithms are integrated as an automated production system, and we implement them in the actual TFT-LCD factory circumstance.