Recently, six sigma has been widely adopted in a variety of industries as a disciplined, data-driven problem solving approach or methodology supported by a handful of powerful statistical tools in order to reduce variation through continuous process improvement. Also, data mining has been widely used to discover unknown knowledge from a large volume of data using various modeling techniques such as neural network, decision tree, regression analysis, etc. This paper proposes a six sigma methodology based on data mining for effectively and efficiently processing massive data in driving six sigma projects. The proposed methodology is applied in the hot stove system which is a major energy-consuming process in a "P" steel company for improvement of heat efficiency through reduction of energy consumption. The results show optimal operation conditions and reduction of the hot stove energy cost by 15%.
In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.
오늘날 센서 기술의 발전 및 보급으로 인해 USN 기반의 실시간 모니터링 응용에서의 센서 데이터 처리 시스템에 대한 연구가 활발히 진행 되고 있다. 센서 데이터는 시간에 따라 빠르게 변화하고 연속적인 저수준 상태의 방대한 양의 데이터를 생성하는 특성을 갖는다. 하지만 엔드유저는 상대적으로 고수준 상태의 데이터에 관심이 있기 때문에 빠르게 변화하고 연속적인 대량의 저수준 센서 데이터를 효과적으로 처리하는 시스템이 필수적이다. 본 논문에서는 USN 기반의 화재감시 응용에서 OLAP(On-Line Analytical Processing) 기술을 이용한 다차원 분석 질의 처리 기능과 학습기반 분류기를 통한 이상치 탐지 기능을 제공하는 센서 데이터 처리 시스템을 제안한다. 실험 시나리오를 통해 우리의 센서 데이터 처리 시스템에 대한 타당성을 검증하며 실험에 필요한 다양한 센서 데이터는 자체 개발한 센서 데이터 생성기를 이용한다.
시장의 변화 및 소비자의 요구 변화를 비롯한 기업 내외부의 상황변화에 대응해서 얼마나 빠르게 적응할 수 있는가 하는 것이 실시간 기업의 핵심요건이다. 이러한 실시간 기업이 가진 변화의 속도를 지원하기 위해서 최근 Big Data 처리 기술이 각광받고 있다. 특히 최근 유무선 통신망의 진화 및 고도화가 가속되고 있는 상황에서 대규모 통신 트래픽을 실시간으로 처리하여 안정된 서비스를 제공하는 것과 강력한 보안 관제 기능은 매우 필요하다. 따라서 본 논문은 클라우드 컴퓨팅 기반의 Big Data처리기술을 활용하여 통신 사업자들이 갖고 있는 경영상의 문제점을 해결하고 효과적인 통신망 관리 시스템의 운영에 관한 연구를 진행한다.
We propose a novel graphics processing unit (GPU) algorithm that can handle a large-scale 3D fast Fourier transform (i.e., 3D-FFT) problem whose data size is larger than the GPU's memory. A 1D FFT-based 3D-FFT computational approach is used to solve the limited device memory issue. Moreover, to reduce the communication overhead between the CPU and GPU, we propose a 3D data-transposition method that converts the target 1D vector into a contiguous memory layout and improves data transfer efficiency. The transposed data are communicated between the host and device memories efficiently through the pinned buffer and multiple streams. We apply our method to various large-scale benchmarks and compare its performance with the state-of-the-art multicore CPU FFT library (i.e., fastest Fourier transform in the West [FFTW]) and a prior GPU-based 3D-FFT algorithm. Our method achieves a higher performance (up to 2.89 times) than FFTW; it yields more performance gaps as the data size increases. The performance of the prior GPU algorithm decreases considerably in massive-scale problems, whereas our method's performance is stable.
최근 빅데이터는 전사적 자원관리 분야뿐만 아니라 해양플랜트내 생산 및 운영 작업 분야에서도 큰 관심을 받고 있다. 이력데이터를 기반으로 미래의 설비에 대한 성능을 예측하는 것은 설비들의 생산성을 향상 시킬 수 있다. 특히 해양플랜트의 주요설비 중 하나인 원심압축기는 고장 시 폭발 할 수 있는 위험한 설비이기 때문에 실시간으로 설비성능을 모니터링 해야 한다. 본 논문에서 원심압축기의 성능을 계산하기 위한 스트림 데이터 처리 구조를 제안한다. 제안하는 시스템은 크게 가상태그 스트림 생성기와 실시간 데이터 스트림 관리자와 같이 두 가지 컴포넌트로 구성된다. 시스템 성능 확장성을 제공하기 위해, 멀티 코어 CPU를 사용하여 대용량 스트림 데이터를 처리할 수 있는 병렬 프로그래밍 접근 방식을 이용하였다. 또한, 실험을 통해 원심압축기의 스트림 데이터 처리에 대한 성능 개선을 보여주었다.
Journal of Advanced Marine Engineering and Technology
/
제34권6호
/
pp.858-863
/
2010
H.264/AVC를 이용한 동영상의 부호화에서 그 속도를 높이기 위해서는 움직임 예측시간을 줄이는 것이 매우 중요하다. 본 논문에서는 H.264/AVC 부호기의 오픈 소스인 x.264를 대상으로 움직임 예측 알고리즘을 CUDA 기반에서 구현함으로서 기존의 압축 기술 이상의 속도 향상 및 CPU의 점유율을 경감 시킬 수 있음을 검증한다.
본 논문에서는 전파천문학에서 초고속 전송망을 위한 관측 데이터의 전송 알고리즘의 개발에 대해 기술한다. 전파망원경으로 관측한 VLBI 데이터 처리를 위한 전처리 과정으로, 데이터 전송 알고리즘은 대용량 스토리지 서버에 저장된 VLBI 데이터를 대전상관기의 동기재생처리장치(RVDB)에 1대 1 방식으로 동작하며 VDIF 규격과 VDIFCP, UDP 프로토콜을 사용한다. 제안방법은 대전상관기의 동기재생처리장치의 데이터 전송을 기다리고 있으면 대용량 스토리지 서버의 Mark5B VSI 규격으로 저장된 2048 Mbps 급 VLBI 관측 데이터를 읽은 후 UDP로 전송하는 방식이다. 제안방법의 유효성을 확인하기 위해 대용량 스토리지 서버와 RVDB OCTADDB 사이에 실제 VLBI 관측 데이터를 전송하고 전송 전후의 데이터에 대해 상관처리 시험을 수행한 후 결과를 비교하였으며, 데이터 전송손실이 없이 전송 전후의 결과가 동일함을 확인하였다. 향후 본 연구에서 개발한 데이터 전송 알고리즘은 KaVA 네트워크에서 e-VLBI로도 유용하게 활용할 수 있을 것으로 기대한다.
Due to recent development in mobile devices, the mobile device utilization and many related applications have been increasing. Most of initial applications on mobile devices just showed simple information, but now they processes huge data. However, smart devices have certain limitations in processing massive data. Especially, if the size of data increases, the speed of data processing adversely decreases, so the performance of programs also decreases. If hardware specification of the mobile devices is not enough to handle it, response time will be drastically delayed. To overcome these drawbacks, most of application running on mobile devices communicate with their servers to manage data. XML is a proper language for data communication to send and receive data between servers and mobile devices, because it defines rules of document's format and it is a textual data format and small-sized language. However, mobile devices have limitation such as memory, CPU and wireless network to process huge data and XML also takes a lot of time to communicate with servers and devices and handle data, so it could be overhead in service time. Binary XML is an alternative of performance improvement in data processing, which has XML's benefits and minimizes the XML size by binary coding. However, most of binaryXML which are used on applications don't fit on mobile applications. In this paper, we surveyed many kinds of binaryXML, compared merits and demerits to find a binaryXML for mobile applications. We propose how to use binary XML and implemented an electronic attendance system using binary XML to overcome the limitation of XML and to reduce the load of data communications between servers and devices.
운영 서버의 데이터에서 다양한 분석 정보를 추출하여 저장하는 의사결정지원시스템인 데이터웨어하우스는 데이터의 품질과 대용량의 데이터를 처리하기 위한 처리 시간이 매우 중요하다. 따라서 데이터의 품질 안정화와 생산성 향상을 위해 개발 프로세스를 표준화하고 개선할 필요가 있다. 본 연구에서는 소프트웨어 프로세스 향상모델인 CMMI의 형상관리를 적용하여 개선된 데이터웨어하우스 개발 프로세스를 제안한다. 또한 개선된 개발 프로세스를 평가하기 위해 프로세스 평가 척도를 제시하고, 기존의 개발 프로세스와 비교하여 본 연구의 제안이 처리시간 감소에 따른 비용의 절감과 생산성의 향상을 지원하고, 품질의 향상과 재작업비율을 개선시켰음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.