Journal of the Korean Data and Information Science Society
/
제24권5호
/
pp.1043-1061
/
2013
최근 과학 기술의 빠른 발전에 따라 대용량 자료가 출현하였고 이에 대한 분석의 중요도도 높아졌다. 대용량 자료의 분석에 가장 중요한 부분중 하나가 고성능 컴퓨팅 기법이고 본 논문에서는 최근 통계학계의 많은 관심을 받고 있는 GPU (graphics processing unit)기반 병렬 계산에 대한 기초적인 소개를 한다.
단일 센서기기로부터 수집된 데이터와는 다르게 대용량의 데이터는 입력데이터의 구성 및 크기가 가변적이고, 처리 완료시점을 예측할 수 없는 특징을 갖고 있다. 상황인지 시스템이 이러한 환경의 요구사항을 적용하게 되면 컨텍스트 표현방법과 처리모듈들이 개별로 구성되어 해당 입력자료에 대한 호출 및 처리루틴이 복잡하게 구현될 수 있는 문제점이 있다. 이러한 문제점을 해결하기 위해서 본 논문에서 제안하는 처리방법은 온톨로지 기반의 지식표현을 통해 컨텍스트를 표현하고, 대용량의 데이터 처리결과를 반환하는 모듈의 중복 실행을 방지하여 컨텍스트 정보를 제공하기 위한 동작순서를 함께 기술한다. 실험에서는 헬스케어 환경에서 발생하는 센싱데이터 중 대용량의 데이터 처리결과를 필요로 하는 서비스에 대해 기술하고, 기존의 센싱데이터를 바탕으로 서비스를 제공하는 처리과정과 함께 대용량의 데이터 처리결과를 컨텍스트 정보로 제공하는 과정을 보인다.
This paper describes the design and implementation of a two-tier DBMS for handling massive data and providing faster response time. In the present day, the main requirements of DBMS are figured out using two aspects. The first is handling large amounts of data. And the second is providing fast response time. But in fact, Traditional DBMS cannot fulfill both the requirements. The disk-oriented DBMS can handle massive data but the response time is relatively slower than the memory-resident DBMS. On the other hand, the memory-resident DBMS can provide fast response time but they have original restrictions of database size. In this paper, to meet the requirements of handling large volumes of data and providing fast response time, a two-tier DBMS is proposed. The cold-data which does not require fast response times are managed by disk storage manager, and the hot-data which require fast response time among the large volumes of data are handled by memory storage manager as snapshots. As a result, the proposed system performs significantly better than disk-oriented DBMS with an added advantage to manage massive data at the same time.
An Internet of Things (IOT) sensor network is an effective solution for monitoring environmental conditions. However, IOT sensor networks generate massive data such that the abilities of massive data storage, processing, and query become technical challenges. To solve the problem, a Hadoop cloud platform is proposed. Using the time and workload genetic algorithm (TWLGA), the data processing platform enables the work of one node to be shared with other nodes, which not only raises efficiency of one single node but also provides the compatibility support to reduce the possible risk of software and hardware. In this experiment, a Hadoop cluster platform with TWLGA scheduling algorithm is developed, and the performance of the platform is tested. The results show that the Hadoop cloud platform is suitable for big data processing requirements of IOT sensor networks.
GIS를 이용한 대용량의 지리정보 처리가 요구되고 있으나 단일 프로세서만으로 복잡한 GIS 연산을 처리하는 데는 능력의 한계성이 대두되고 있다. 특히, GIS 데이터의 증가속도에 프로세서 발전 속도가 미치지 못하고, 증가되는 광범위한 데이터를 처리하는 작업 또한 많은 시간이 걸리는 문제점이 나타나고 있다. 이에 대한 대안으로 계산의 양이 많고 또한, 대용량의 입·출력이 빈번히 일어나는 GIS 연산 작업을 여러 프로세서에 분산시켜 동시에 수행하도록 하는 GIS 작업의 병렬화에 대한 연구가 최근 활발히 진행되고 있다. 본 연구에서는 고가의 병렬 컴퓨터로만 수행되던 병렬 처리를 일반적인 GIS 사용자들이 사용하는 PC 기반으로 MPI(Message Passing Interface)를 사용하여 기존의 단일 프로세서로만 진행되던 래스터 GIS 연산에 대해서 병렬화 과정을 적용하여 연산의 처리 능력을 향상시키고자 한다. 이를 위해, GIS 연산들에 대한 체계적인 분석과 분류를 제시한 Tomlin(1990)의 래스터 GIS 연산을 기준으로 각 연산에 대해 적합한 데이터 분할 기법을 통한 병렬화 과정을 연구하였다.
본 연구에서는 Workstation Cluster 환경에서 전통적인 디스크들을 배열처럼 사용할 수 있는 병렬 화일시스템(N-PFS)의 성능을 해석적 방법과 실측 결과를 사용 하여 분석하였다. N-PFS는 소규모 서버 시스템에서 고성능 화일 서버로 사용될 수 있으며, 멀티미디어 데이타나 과학 계산용 데이타와 같은 대용량 데이타를 효율 적으로 처리할 수 있다 본 논문에서는 N-PFS의 성능 분석을 위한 해석적 모델을 제시하였으며, 제시된 해석적 모델의 정확성을 시스템에서의 실측값과 비교함으로써 검증하였다. 해석적 방법과 실측을 통하여 성능을 분석한 결과, 위크스테이션 클리스터 환경에서 대용량 데이타 처리에 적합한 스트라이핑 단위는 64-128Kbytes이며, 8개의 디스크에서 최대 대역폭은 15.8Mbytes/sec로 나타났다. 그리고 대용량 데이타 처리시의 병목 현상은 버퍼 간의 데이타 폭사시간으로 나타났다.
해상시험에서 획득되는 자료는 함정 1척당 53GB 정도의 대용량으로 고가이며, 재현이 불가능하므로 체계적인 관리가 요구된다. 본 논문에서는 각 시험별로 획득, 관리되어오던 대용량 원시자료와 다양한 분석기법을 통하여 추출한 분석자료를 통합하여 장기간 저장함과 동시에 체계적으로 관리, 제공할 목적으로 개발되어 운용중인 해상시험자료 데이터베이스 시스템에 대해서 논한다. 대용량 CD-쥬크박스를 자진 유닉스 서버와 윈도우 환경의 클라이언트로 구성된 시스템으로 현재 입력된 6003개의 검색건수를 이용하여 클라이언트/서버 각각에 대해서 성능 평가를 수행한다.
주요 IT 벤더들은 클라우드 컴퓨팅 기술을 이용하여 설치과정 생략, 운용비용 절감, 서비스품질 등에 중점을 두어 대규모 콘텐츠 서비스를 제공하고 있다. 반면에, 대규모 콘텐츠 데이터의 가공, 분석을 수행하는 데이터 처리 프로세스는 처리 시간의 단축을 위한 방법론이 요구되고 있다. 이에 본 논문에서는 클라우드 환경에서 대규모 콘텐츠를 위한 효율적인 자원처리 기법(Efficient_Cloud_Processing_Scheme : ECPS)을 제안한다. 제안한 기법은 리소스 확장 방안을 CPU 및 스토리지 등의 인프라스트럭처 단계에서 설계한다. 대규모 콘텐츠에 대한 자원 할당 방안을 Hadoop 플랫폼 기반의 MapReduce 프로그래밍 기법과 데이터마이닝 분야에서 숨겨진 패턴을 탐지하는데 사용되는 연관규칙을 이용하여 제시한다. 기존 설정값으로 자원을 할당하여 비교하여 ECPS기법을 적용한 결과, 제안 기법이 20% 이상의 성능 및 속도가 향상되었음을 확인하였다.
With growing popularity of cloud computing services, users can more easily manage massive amount of data by outsourcing them to the cloud, or more efficiently analyse large amount of data by leveraging IT infrastructure provided by the cloud. This, however, brings the security concerns of sensitive data. To provide data security, it is essential to encrypt sensitive data before uploading it to cloud computing services. Although data encryption helps provide data security, it negatively affects the performance of massive data analytics because it forbids the use of index and mathematical operation on encrypted data. Thus, in this paper, we propose a novel algorithm which enables to efficiently process a large amount of encrypted data. In particular, we propose a novel top-k processing algorithm on the massive amount of encrypted data in the cloud computing environments, and verify the performance of the proposed approach with real data experiments.
This paper embodies the agent based cinder monitoring system which supports PDA(Personal Digital Assistant). Monitoring system automatically manages data by using data managing agents such as a state managing agent, a location managing agent, a badness managing agent, a circumstances managing agent, etc, and uses a massive data processing agent to manage massive data. The development of agent based data monitoring system for the stable cinder reuse will be an epoch-making method to develop the process mechanized or manual-labored that widely spreads into the real-time automated process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.