• 제목/요약/키워드: Mass-loading effect

검색결과 135건 처리시간 0.02초

Rotor Blade Sweep Effect on the Performance of a Small Axial Supersonic Impulse Turbine

  • Jeong, Sooin;Choi, Byoungik;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.571-580
    • /
    • 2015
  • In this paper, a computational study was conducted in order to investigate the rotor blade sweep effect on the aerodynamics of a small axial supersonic impulse turbine stage. For this purpose, three-dimensional unsteady RANS simulations have been performed with three different rotor blade sweep angles ($-15^{\circ}$, $0^{\circ}$, $+15^{\circ}$) and the results were compared with each other. Both NTG (No tip gap) and WTG (With tip gap) models were applied to examine the effect on tip leakage flow. As a result of the simulation, the positive sweep model ($+15^{\circ}$) showed better performance in relative flow angle, Mach number distribution, entropy rise, and tip leakage mass flow rate compared with no sweep model. With the blade static pressure distribution result, the positive sweep model showed that hub and tip loading was increased and midspan loading was reduced compared with no sweep model while the negative sweep model ($-15^{\circ}$) showed the opposite result. The positive sweep model also showed a good aerodynamic performance around the hub region compared with other models. Overall, the positive sweep angle enhanced the turbine efficiency.

대형천연가스차량에서 촉매시뮬레이션에 의한 배출가스의 변환율 예측 연구 (A Conversion Rate Prediction Study of Exhaust Gas by Catalyst Simulation in Heavy Duty Natural Gas Vehicle)

  • 한영출;오용석;강호인
    • 한국대기환경학회지
    • /
    • 제16권3호
    • /
    • pp.257-264
    • /
    • 2000
  • An aftertreatment device which reduce exhaust gas of natural gas vehicle(NGV), NGV catalyst has important meaning as to reduce the exhaust emission. In this study, the characteristics of NGV catalyst were investigated and the effect parameters of NGV catalyst were analyzed and were predicted by changing the various parameters such as temperature, and gas concentration. The conversion efficiency of NGV catalyst converter was also predicted by Pd-loading, mass flow rate and gas composition.

  • PDF

원심압축기 임펠러의 미끄럼계수 변화에 관한 수치연구 (A Numerical Study on Slip Factor Variations in Centrifugal Compressor Impellers)

  • 오종식
    • 한국유체기계학회 논문집
    • /
    • 제2권3호
    • /
    • pp.17-23
    • /
    • 1999
  • In the present numerical analysis, investigation of the effect of blade loadings from design shape on the slip factor variation was studied. Both the Eckardt radial bladed impeller and the backswept impeller were analyzed. In addition, a new design of the blade profile was arbitrarily attempted to generate a center-loading pattern in the original backswept impeller. Three dimensional compressible Navier-Stokes flow analysis with the Baldwin-Lomax turbulence model was applied to get the numerical slip factor at each impeller exit plane using the mass-averaging technique. The numerical slip (actors are in good agreement with the experimental ones and the Wiesner's slip factors deviate further from the numerical and experimental ones in both backswept impellers. Deviation angles and meridional channel loadings are found in no relation with the trend of change of the slip factor. Blade-to-blade loadings in midspan location are, however, found to have a direct relationship, especially at the sections where maximum loadings we to be expected. That information can be utilized in establishing an improved expression for slip factors in the future.

  • PDF

Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells

  • Torabi, Jalal;Ansari, Reza
    • Structural Engineering and Mechanics
    • /
    • 제68권3호
    • /
    • pp.313-323
    • /
    • 2018
  • A numerical study is performed to investigate the impacts of thermal loading on the vibration and buckling of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) conical shells. Thermo-mechanical properties of constituents are considered to be temperature-dependent. Considering the shear deformation theory, the energy functional is derived, and applying the variational differential quadrature (VDQ) method, the mass and stiffness matrices are obtained. The shear correction factors are accurately calculated by matching the shear strain energy obtained from an exact three-dimensional distribution of the transverse shear stresses and shear strain energy related to the first-order shear deformation theory. Numerical results reveal that considering temperature-dependent material properties plays an important role in predicting the thermally induced vibration of FG-CNTRC conical shells, and neglecting this effect leads to considerable overestimation of the stiffness of the structure.

투수 및 암반거동을 고려한 터널 라이닝의 거동 분석 (Tunnel-Lining Analysis in Consideration of Seepage and Rock Mass Behavior)

  • 공정식;최준우;남석우;이인모
    • 대한토목학회논문집
    • /
    • 제26권5C호
    • /
    • pp.359-368
    • /
    • 2006
  • 시공후 터널의 거동에 영향을 주는 대표적인 인자들로 시간에 따른 투수상태와 지반의 장기거동을 들 수 있다. 본 연구에서는 이러한 인자들과 관련된 터널거동을 분석하기 위한 수치해석모델을 개발하고 터널이 겪을 수 있는 다양한 시공 후 하중 조건에 대하여 수치해석을 수행하였다. 터널 변상에 대한 영향인자와 터널거동의 메카니즘을 파악하기 위해 가능한 모든 변상 발생 시나리오를 구성하였으며, 부직포의 투수계수, 수위상승, 장기적인 이완하중과 과발파로 인한 손상 등 터널의 시공 후 장기 변상에 관련된 인자들이 조사되었다. 시공 후 터널 변상 발생 시나리오는 터널형식과 그에 따른 하중 메카니즘에 따라 크게 두 가지로 구분할 수 있음을 알 수 있었다. 토사터널에 대해서는 투수상태와 관련된 거동이 주요 변상의 원인으로 분석되었으며 배수재의 투수계수 저하와 수위상승에 의한 영향에 대해 분석하였다. 암반 터널에서는 암반의 점소성 거동을 분석하였고 암반의 이완과 크립에 의한 장기적인 이완하중의 영향에 대해 연구하였다.

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.

고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가 (Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment)

  • 강범희;임경호;이상민
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.

Anuran Metamorphosis: a Model for Gravitational Study on Motor Development

  • Jae Seung;Jin Cheul;In-Ho;Park, In-Ho
    • Animal cells and systems
    • /
    • 제4권3호
    • /
    • pp.223-229
    • /
    • 2000
  • Limbs and supporting structures of an organism experience a full weight of its own when it lands from water, because neutral buoyancy in the aquatic habitat will be no longer available in the terrestrial world. Metamorphosis of anuran amphibians presents 8 good research model to examine how this transition from non-loading to weight-loading affects development of motor capacity at the time of their first emergence on land. Our video analysis of the transitional anurans, Rana catesbeiana, at Gosner stage 46 (the stage of complete transformation) demonstrated that the take-off speed increased 1.23-fold after the first six hours of weight-loading on the wet ground. It did not increase further during the following three days of loading, and was close to the level of mature frogs with different body mass. During development of larvae in deep water with no chance of landing through metamorphosis, both tension and power of a hindlimb anti-gravity muscle increased 5-fold between stages 37 and n. However, the muscle contractility increased more rapidly when the larvas could access the wet ground by their natural landing behavior after stages 41-42. Muscle power, one of major factors affecting locomotory speed, was 1.29-fold greater in the loaded than in the non-loaded larvae at the transitional stage. Thus, weight-loading had a potentially significant effect on the elevation of motor capacity, with a similar extent of increment in locomotory speed and muscle power during the last stages of metamorphosis. Such a motor adjustment of the froglets in a relatively short transitional period would be important for effective ecological interactions and survival in their inexperienced terrestrial life.

  • PDF

냉간시동시 자동차용 저온활성촉매의 성능 향상을 위한 수치적 설계 (Numerical Design of Light-off Auto-Catalyst for Reducing Cold-Start Emissions)

  • 정수진;김우승
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1264-1276
    • /
    • 2000
  • Light-off catalyst has been used for minimization of cold-start emissions. Improved cold-start performance of light-off catalyst needs the optimal design in terms of flow distribution, geometric surface area, precious metal loading, cell density and space velocity. In this study, these influential factors are numerically investigated using integrated numerical technique by considering not only 3-D fluid flow but also heat and mass transfer with chemical reactions. The present results indicate that uneven catalyst loading of depositing high active catalyst at upstream of monolith is beneficial during warm-up period but its effect is severely deteriorated when the space velocity is above 100,000 $hr^{-1}$ To maximize light-off performance, this study suggests that 1) a light-off catalyst be designed double substrate type; 2) the substrate with high GSA and high PM loading at face be placed at the front monolith; and 3) the cell density of the rear monolith be lower to reduce the pressure drop.

An Analytical Study on the Gas-Solid Two Phase Flows

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF