• Title/Summary/Keyword: Mass spectrometry (MS)

Search Result 1,913, Processing Time 0.023 seconds

MS-Based Technologies for the Study of Site-Specific Glycosylation

  • Kim, Unyong;Oh, Myung Jin;Lee, Jua;Hwang, Hee Yeon;An, Hyun Joo
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.69-78
    • /
    • 2017
  • Glycosylation, which is one of the most common post-translation modification (PTMs) of proteins, plays a variety of crucial roles in many cellular events and biotherapeutics. Recent advances have led to the development of various analytical methods employing a mass spectrometry for glycomic and glycoproteomic study. However, site-specific glycosylation analysis is still a relatively new area with high potential for technologies and method development. This review will cover current MS-based workflows and technologies for site-specific mapping of glycosylation ranging from glycopeptide preparation to MS analysis. Bioinformatic tools for comprehensive analysis of glycoprotein with high-throughput manner will be also included.

Development of a Four-way Interface for Online Capillary Isoelectric Focusing-Electrospray-Mass Spectrometry (CIEF-ESI-MS)

  • Yu, Hai Dong;Kim, Byungjoo;Shin, Dae-Ho;Ahn, Seonghee
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.83-86
    • /
    • 2013
  • A new interface for coupling CIEF and MS using a four-way cross has been developed in a single mechanical system. This new interface could be operated without the electric discontinuity and reinstallation of lines. Additionally, a bare fused silica capillary was facilitated as a spray needle to produce electrospray and to guide catholyte or sheath liquid. Focusing for CIEF was completed in a hanging droplet at the end of spray needle. This capillary spray needle also provided stable spray, enhanced the ionization efficiency and increased sensitivity. Results with carbonic anhydrase I showed that focusing and spraying were well completed with the new interface and the new spray needle.

Phospholipid Analysis by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry

  • Moon, Myeong Hee
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Lipids play important roles in biological systems; they store energy, play a structural role in the cell membrane, and are involved in cell growth, signal transduction, and apoptosis. Phospholipids (PLs) in particular have received attention in the medical and lipidomics research fields because of their involvement in human diseases such as diabetes, obesity, atherosclerosis, and many cancers associated with lipid metabolic disorders. Here I review experimental strategies for PL analysis based on nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MSn). In particular, discussed are lipid extraction methods, nanoflow LC separation of PLs, effect of ionization modifiers on the ESI of PLs, influence of chain lengths and unsaturation degree of acyl chains of PLs on MS intensity, structural determination of the molecular structure of PLs and their oxidized products, and quantitative profiling of PLs from biological samples such as tissue, urine, and plasma in relation to cancer and coronary artery disease.

GC-MS Analysis of Ricinus communis, Pongamia pinnata, Datura metal, Azadirachta indica, Acalypha indica (leaf) Extract Using Methanol Extraction

  • J. Varshini premakumari;M. Job Gopinath
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.79-90
    • /
    • 2023
  • Natural goods, especially therapeutic plants, are abundant in the World. Because they have the ability to provide all humanity with countless advantages as a source of medicines, medicinal plants are presently receiving more attention than ever. These plants' therapeutic efficacy is based on bioactive phytochemical components that have clear physiological effects on the human body. The drying process is crucial for the preparation of plant materials prior to extraction since freshly harvested plant materials include active enzymes that create active components, intermediates, and metabolic processes. Many of the phytoconstituents may be extracted using the semi-polar solvent methanol. The goal of the current work is to use the GC-MS gas chromatography- mass spectrometry technology to identify the phytochemicals and review their biological activity. In methanol leaf extract, 5 phytocompounds were found in Ricinus communis, 5 phytocompounds in Pongamia pinnata, 12 phytocompounds in Datura metal, 7 phytocompounds in Azadirachta indica, 11 phytocompounds in Acalypha indica.

Compositional Characterization of Petroleum Heavy Oils Generated from Vacuum Distillation and Catalytic Cracking by Positive-mode APPI FT-ICR Mass Spectrometry

  • Kim, Eun-Kyoung;No, Myoung-Han;Koh, Jae-Suk;Kim, Sung-Whan
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.41-44
    • /
    • 2011
  • Molecular compositions of two types of heavy oil were studied using positive atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vacuum gas oil (VGO) was generated from vacuum distillation of atmospheric residual oil (AR), and slurry oil (SLO) was generated from catalytic cracking of AR. These heavy oils have similar boiling point ranges in the range of 210-$650^{\circ}C$, but they showed different mass ranges and double-bond equivalent (DBE) distributions. Using DBE and carbon number distributions, aromatic ring distributions, and the extent of alkyl side chains were estimated. In addition to the main aromatic hydrocarbon compounds, those containing sulfur, nitrogen, and oxygen heteroatoms were identified using simple sample preparation and ultra-high mass resolution FT-ICR MS analysis. VGO is primarily composed of mono- and di-aromatic hydrocarbons as well as sulfur-containing hydrocarbons, whereas SLO contained mainly polyaromatic hydrocarbons and sulfur-containing hydrocarbons. Both heavy oils contain polyaromatic nitrogen components. SLO inludes shorter aromatic alkyl side chains than VGO. This study demonstrates that APPI FT-ICR MS is useful for molecular composition characterization of petroleum heavy oils obtained from different refining processes.

MS Platform for Erythropoietin Glycome Characterization

  • Seo, Youngsuk;Kim, Unyong;Oh, Myung Jin;Yun, Na Young;An, Hyun Joo
    • Mass Spectrometry Letters
    • /
    • v.6 no.3
    • /
    • pp.53-58
    • /
    • 2015
  • Recombinant erythropoietins (EPOs) are an important class of biotherapeutics that stimulate red blood cell production. The quality, safety, and potency of EPO variants are determined largely by their glycosylation, which makes up nearly half their mass. Thus, detailed glycomic analyses are important to assess biotherapeutic quality and establish the equivalency of biosimilar EPOs now coming to market. High-resolution mass spectrometry (MS) has recently emerged as the premier tool for glycan analysis in EPOs. Using the accurate mass measurements provided by high-resolution MS, the compositions of even large, complex glycans can easily be determined. When combined with a nano-LC separation, differentiation of structural isomers also becomes a possibility. These components, together, provide a comprehensive picture of biotherapeutic glycosylation. In this review, we provide an overview of MS-based analytical platform for glycomic characterization of EPO biotherapeutics and biosimilars.

Investigation of the Copper (Cu) Binding Site on the Amyloid beta 1-16 (Aβ16) Monomer and Dimer Using Collision-induced Dissociation with Electrospray Ionization Tandem Mass Spectrometry

  • Ji Won Jang;Jin Yeong Lim;Seo Yeon Kim;Jin Se Kim;Ho-Tae Kim
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.153-159
    • /
    • 2023
  • The copper ion, Cu(II), binding sites for amyloid fragment Aβ1-16 (=Aβ16 ) were investigated to explain the biological activity difference in the Aβ16 aggregation process. The [M+Cu+(z-2)H]z+ (z = 2, 3 and 4, M = Aβ16 monomer) and [D+Cu+(z-2)H]z+ (z = 3 and 5, D = Aβ16 dimer) structures were investigated using electrospray ionization (ESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Fragment ions of the [M+Cu+(z-2)H]z+ and [D+Cu+(z-2)H]z+ complexes were observed using collision-induced dissociation MS/MS. Three different fragmentation patterns (fragment "a", "b", and "y" ion series) were observed in the MS/MS spectrum of the (Aβ16 monomer or dimer-Cu) complex, with the "b" and "y" ion series regularly observed. The "a" ion series was not observed in the MS/MS spectrum of the [M+Cu+2H]4+ complex. In the non-covalent bond dissociation process, the [D+Cu+3H]5+ complex separated into three components ([M+Cu+H]3+, M3+, and M2+), and the [M+Cu]2+ subunit was not observed. The {M + fragment ion of [M+Cu+H]3+} fragmentation pattern was observed during the covalent bond dissociation of the [D+Cu +3H]5+ complex. The {M + [M+Cu+H]3+} complex geometry was assumed to be stable in the [D+Cu+3H]5+ complex. The {M + fragment ion of [M+Cu]2+} fragmentation pattern was also observed in the MS/MS spectrum of the [D+Cu+H]3+ complex. The {M + [y9+Cu]1+} fragment ion was the characteristic fragment ion. The [D+Cu+H]3+ and [D+Cu+3H]5+ complexes were likely to form a monomer-monomer-Cu (M-M-Cu) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Inspection of the Fragmentation Pathway for Thiamethoxam

  • Son, Sunwoong;Kim, Byungjoo;Ahn, Soenghee
    • Mass Spectrometry Letters
    • /
    • v.8 no.3
    • /
    • pp.65-68
    • /
    • 2017
  • Thiamethoxam is one of the main suspect in honeybee colony collapse disorder (CCD). Due to this reason, thiamethoxam including imidacloprid and clothianidin has been banned for two years in some Europe countries. The CCD phenomenon has also been reported in Korea. Regarding this issue and needs, a new project has started to develop the method for the quatitation of thiamethoxam using isotope dilution mass spectrometry (IDMS). In the process of optimization for the IDMS method with thiamethoxam and $thiamethoxam-d_3$, we observed that the fragment peaks did not correspond to the fragmentation pathway as published elsewhere. Here, we proposed a candidate fragmentation pathway. To validate the proposed fragmentation pathway, another isotope analogue, $thiamethoxam-d_4$, was introduced and the MS/MS spectra of both isotope analogues were compared. In addition, the MS/MS/MS spectra of thiamethoxam were inspected for more evidence of the candidate pathway. Those spectra indicated that the proposed fragmentation pathway could be used to assign the fragment peaks of thiamethoxam.

Possibilities of Liquid Chromatography Mass Spectrometry (LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat Products: A Mini Review

  • Harlina, Putri Widyanti;Maritha, Vevi;Musfiroh, Ida;Huda, Syamsul;Sukri, Nandi;Muchtaridi, Muchtaridi
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.744-761
    • /
    • 2022
  • The liquid chromatography mass spectrometry (LC-MS)-based metabolomic and lipidomic methodology has great sensitivity and can describe the fingerprint of metabolites and lipids in pork and beef. This approach is commonly used to identify and characterize small molecules such as metabolites and lipids, in meat products with high accuracy. Since the metabolites and lipids can be used as markers for many properties of a food, they can provide further evidence of the foods authenticity claim. Chromatography coupled to mass spectrometry is used to separate lipids and metabolites from meat samples. The research data usually is compared to lipid and metabolite databases and evaluated using multivariate statistics. LC-MS instruments directly connected to the metabolite and lipid databases software can be used to assess the authenticity of meat products. LC-MS has good selectivity and sensitivity for metabolomic and lipidomic analysis. This review highlighted the combination of metabolomics and lipidomics can be used as a reference for analyzing authentication meat products.