• Title/Summary/Keyword: Mass of working fluid

Search Result 165, Processing Time 0.025 seconds

Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (II) - Exergy Analysis for Working Fluids of R245fa and Water - (선박용 디젤엔진의 배기가스 열회수 시스템 (II) - R245fa 및 Water 의 작동유체에 대한 엑서지 분석 -)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.593-600
    • /
    • 2012
  • The exergy characteristics for R245fa and water working fluids have been analyzed for an electric generation system utilizing the Rankine cycle to recover heat from the wasted exhaust gas from a diesel engine used for the propulsion of a large ship. The theoretical calculation results showed that the efficiencies of exergy and system exergy improved as the turbine inlet pressure increased for R245fa at a fixed mass flow rate. Furthermore, the exergy destruction rates of the condenser and evaporator were relatively larger than those in other components. The exergy efficiency of the system increased with increasing mass flow rate. For a water working fluid, although the exergy destruction rate of the evaporator was similar to that for R245fa, the exergy loss rate varied significantly in response to variations in the pressure and mass flow rates at the turbine inlet.

A Fundamental Study on Offshore Structures of high pressure control valve (해양구조물용 고압 컨트롤 밸브에 대한 기초 연구)

  • Lee, Chi-Woo;Jang, Sung-Cheol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

Evaluation of thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) for recuperators of Sodium-cooled Fast Reactors (SFRs) using CO2 and N2 as working fluids

  • Lee, Su Won;Shin, Seong Min;Chung, SungKun;Jo, HangJin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1874-1889
    • /
    • 2022
  • In this study, we evaluate the thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) according to the channel types and associated shape variables for the design of recuperators with Sodium-cooled Fast Reactors (SFRs). To perform the evaluations with variables such as the Reynolds number, channel types, tube diameter, and shape variables, a code for the heat exchanger is developed and verified through a comparison with experimental results. Based on the code, the volume and pressure drop are calculated, and an economic assessment is conducted. The zigzag type, which has bending angle of 80° and a tube diameter of 1.9 mm, is the most economical channel type in a SFR using CO2 as the working fluid. For a SFR using N2, we recommend the airfoil type with vertical and horizontal numbers of 1.6 and 1.1, respectively. The airfoil type is superior when the mass flow rate is large because the operating cost changes significantly. When the mass flow rate is small, volume is a more important design parameter, therefore, the zigzag type is suitable. In addition, we conduct a sensitivity analysis based on the production cost of the PCHE to identify changes in optimal channel types.

A Numerical Analysis on the Heat Transfer and Pressure Drop Characteristics of Welding Type Plate Heat Exchangers (용접형 판형열교환기의 열전달 및 압력강하특성에 관한 수치해석)

  • Jeong, Jong-Yun;Nam, Sang-Chul;Kang, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.676-682
    • /
    • 2008
  • Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using Computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is $H_2O$/LiBr solution with the LiBr concentration of 50-60% in mass. The numerical simulation shows reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems.

Atomization Characteristics of Effervescent Atomizer with the Variations of Operating Conditions (작동조건 변화에 따른 기체주입미립화기의 미립화 특성)

  • Kim, Hyung-Gon;Yano, Toshiaki;Song, Kyu-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.869-874
    • /
    • 2003
  • The atomization characteristics were investigated through the influence of the change of GLR and the change of working fluid on droplet size distribution and mean diameter of drop produced by effervescent atomizer. For simultaneous injection of water and high viscous waste vegetable oil, effervescent atomizer with two aerator tubes was specially designed. From the experimental results, regardless of mass fraction of vegetable oil in working fluids, it is expected that effervescent atomizer will exhibit excellent atomization performance at the high GLR conditions.

  • PDF

An Experimental Study on Cooling of Hydration Heat of Mass Concrete Structure using Pulsating Heat Pipe in Summer Season (진동형 히트 파이프를 이용한 하계 매스 콘크리트의 수화열 냉각에 관한 실험적 고찰)

  • Yang, Tae-Jin;Kim, Jeong-Hoon;Kim, Jong-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure. the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete. this paper reports results of hydration heat control in mass concrete structure using the pulsating heat pipe. There were three RC box molds($1.2{\times}l.8{\times}2.4m^3$) which shows a difference as compared with each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of serpentine type copper pipe with 10 turns (outer diameter: 4mm. inner diameter: 2.8mm). The working fluid was R-22 and its charging ratio was 40% by volume. The conditions such as the number of turns. the length and the pitch of the pulsating heat pipe and the size of concrete structure were changed. Based on these experiments, it was confirmed that this construction method using pulsating heat pipe was effective to remove hydration heat of mass concrete structure and thus it was possible to prevent harmful thermal crack and construction Period and costs of concrete structure would be cut down.

An Experimental Study on Hydration Heat Control in The Mass Concrete Using Oscillating Capillary Tube Heat Pipe (진동세관형 히트파이프(OCHP)를 이용한 매스콘크리트의 수화열 제어에 관한 실험적 연구)

  • Beak, Dong-Il;Kim, Myung-Sik;Lee, Moon-Sik;Kim, Kang-Min;Yum, Chi-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.409-412
    • /
    • 2006
  • In process of reinforced concrete(RC) box structure, the heat of hydration may cause serious thermal cracking problems. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control in mass concrete using the OCHP(Oscillating Capillary tube Heat Pipe). Recently OCHP is drawn special attention from these points of low cost as well as short construction schedule for the manufacturing of heat exchanger, flexibility, simplification and high performance. There were three RC box molds$(1.2{\times}1.2{\times}1.2m)$ which shows a difference as compared with each other. One was not equipped with OCHP. While others were equipped with OCHP and these were cooled with air natural convection and spraying water respectively. The OCHP was composed of copper pipe with 12 turns(O.D : 4mm, I.D : 2.8mm). The working fluid was R-22 and its charging ratio was 30(Vol. %). In order to analyze the distribution of temperature and index figure of thermal crack in sequential placement of mass concrete, we used HYCON of computer program. As a result of the experiment, the peak temperature decreased about $15.6\sim23.4^{\circ}C$ than the general specimen and the probability of thermal crack generated in mass concrete decreased up to 0%.

  • PDF

An Experimental Study on an Ice Storage System by a Two-Phase Closed Thermosyphon (2상 밀폐 서모사이폰을 이용한 빙축열 시스템의 성능)

  • Kyung, I.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.2
    • /
    • pp.87-96
    • /
    • 1991
  • A two-phase closed thermosyphon is applied to an ice storage system. The thermosyphon is used to freeze the water in a storage tank. The experiment has been performed to investigate the effects of the important parameters such as the quantity of the fluid filled with, the ratio of the length of the evaporator to the condenser, and the temperature and the mass flow rate of the brine. It is found that the higher thermal performance of the thermosyphon is obtained as the ratio of the length of the evaporator section to that of the condenser section is decreased and the temperature of the brine is lowered. The increase of the quantity of the working fluid also favors the performance of the system. The experimental data can be utilized for the basic design of ice storage systems with thermosyphons.

  • PDF

Study on Design Parameters of Supersonic Ejectors to Simulate High Altitude Engine Test (고고도 엔진 성능모사를 위한 2차 노즐 목을 갖는 초음속 이젝터의 설계 인자 연구(Ⅱ))

  • Yoon, Si-Kyung;Yeom, Hyo-Won;Sung, Hong-Gye;Shin, Wan-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.353-356
    • /
    • 2008
  • The effects of design parameters of supersonic ejector system under the assumption of constant pressure mixing; such as mass flow rate ratio, area ratio, Primary mach number on ejector system performance were investigated by theoretical formulations. And for a given design condition and working fluid, Computational Fluid Dynamics was conducted.

  • PDF

Design Optimization of an Impingement Jet on Concave Surface for Enhancement of Heat Transfer Performance (곡면에서의 열전달성능 향상을 위한 충돌제트의 최적설계)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.100-103
    • /
    • 2011
  • In the present work, a numerical study of fluid flow and heat transfer on the concave surface with impinging jet has been performed by solving three-dimensional Reynods-averaged Naver-Stokes(RANS) equations. The constant temperature condition was applied to the concave impingement surface. The inclination angle of jet nozzle and the distance between jet nozzles are chosen as design variables under equivalent mass flow rate of working fluid into cooling channel, and area averaged Nusselt number on concave impingement surface is set as the objective function. Thirteen training points are obtained by Latin Hypercube sampling method, and the PEA model is constructed by using the objective function values at the trainging points. And, the sequential quadratic programming is used to search for the optimal paint from the PBA model. Through the optimization, the optimal shape shows improved heat transfer rate as compared to the reference geometry.

  • PDF