• Title/Summary/Keyword: Mass of ice

Search Result 179, Processing Time 0.024 seconds

Research on total resistance of ice-going ship for different floe ice distributions based on virtual mass method

  • Guo, Wei;Zhao, Qiao-sheng;Tian, Yu-kui;Zhang, Wan-chao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.957-966
    • /
    • 2020
  • This paper presents the virtual mass method to implement the prediction of total resistance for ice-going ship in floe ice region based on the combined method of CFD and DEM. Two ways of floe ice distribution are adopted for the analysis and comparison. The synthetic ice model test has been conducted to determine the optimal virtual mass coefficients for the two different floe ice distributions. Moreover, the further verification and prediction are developed in different ice conditions. The results show that, the fixed and random distributions in numerical method can simulate the interaction of ship and ice vividly, the trend of total resistance varying with the speed and ice concentration obtained by the numerical simulation is consistent with the model test. The random distribution of floe ice has higher similarity and better accuracy than fixed distribution.

Comparative Study of Ice Breaking Performance according to Scale of Sea Ice on Ice Field (실해역 해빙 크기에 따른 Araon호의 쇄빙성능 비교연구)

  • Lee, Chun-Ju;Kim, Hyun Soo;Choi, Kyungsik
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • The Korean icebreaking research vessel "Araon" performed four sea trials in the Arctic and Antarctic Seas. The ice properties, such as the ice thickness, floe size, ice strength, and power of the vessel were quite different in these trials. To compare the speeds of ship with the same ice strength and power, the AARC (Arker Arctic Research Center) method is used with a vessel power of 10 MW and an ice strength of 630 Pa in this paper. Based on the analysis results, the speed of the ship was 1.62 knots (0.83 m/s) with a 1.02-m ice thickness and 2.5-km floe size, 5.3 knots (2.73 m/s) with a 1.2-m ice thickness and 1.0-km floe size, and 13.8 knots (7.10 m/s) with a 1.1-m ice thickness and 200-m floe size. The analysis results showed that the ship speed and floe size have an inversely proportional relationship. Two reasonable reasons are given in this paper for the final result. One is an ice breaking phenomenon, and the other is the effect of the ice floe mass. For the breaking phenomenon, the ice breaking force is very small because the ice floe is not breaking but tearing when a ship is passing through a small ice floe. Regarding the effect of the ice floe mass, it is impossible for a ship to push and tear an ice floe if the mass of the ice floe is too large compared to the mass of the ship. The velocity of the ship decreases when the ice floe has a large mass and a large size because the ship has to break the ice floe to move forward.

Ice mass balance over the polar region and its uncertainty (극지방 빙하량 변화 (ice-mass balance) 관측과 에러 분석)

  • Seo, Ki-Weon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.63-72
    • /
    • 2007
  • Current estimates of the ice-mass balance over the Greenland and the Antarctica using retrievals of time-varying gravity from GRACE are presented. Two different GRACE gravity data, UTCSR RL01 and UTCSR RL04, are used for the estimates to examine the impact of the relative accuracy of background models in the GRACE data processing for inter-annual variations of GRACE gravity data. In addition, the ice-mass balance is appraised from the conventional GRACE data, which represents global gravity, and the filtered GRACE data, which isolates the terrestrial gravity effect from GRACE gravity data. The former estimate shows that there exists similar negative trends of ice-mass balance over the Greenland from UTCSR RL01 and UTCSR RL04 while the time series from the both GRACE data over the Antarctica differ significantly from each other, and no apparent trends are observed. The result for the Greenland from the latter calculation is similar to the former estimate. However, the latter calculation presents positive trends of ice-mass balance for the Antarctica from both GRACE data. These results imply that residual oceanic geophysical signals, particularly for ocean tides, significantly corrupt the ice-mass estimate over the Antarctica as leakage error. In addition, the spatial alias of GRACE is likely to affect the ice-mass balance because the spatial spectrum of ocean tides is not conserved via GRACE sampling, and thus ocean tides contaminate terrestrial gravity signal. To minimize the alias effect, I suggest to use the combined gravity models from GRACE, SLR and polar motion.

  • PDF

Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System (아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 특성 분석)

  • Lee, Dong-Won;Lee, Soon-Myung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.111-115
    • /
    • 2006
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and Ice fraction of ice slurry were varied from 800 to $3,500 kg/m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. During the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

  • PDF

Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads

  • Sharma, R.K.;Domala, V.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.369-390
    • /
    • 2019
  • Herein, we present numerical simulation based model to study the use of a 'Tuned Mass Damper (TMD)' - particularly spring mass systems - to control the displacements at the deck level under seismic and ice loads for an offshore jacket structure. Jacket is a fixed structure and seismic loads can cause it to vibrate in the horizontal directions. These motions can disintegrate the structure and lead to potential failures causing extensive damage including environmental hazards and risking the lives of workers on the jacket. Hence, it is important to control the motion of jacket because of earthquake and ice loads. We analyze an offshore jacket platform with a tuned mass damper under the earthquake and ice loads and explore different locations to place the TMD. Through, selected parametric variations a suitable location for the placement of TMD for the jacket structure is arrived and this implies the design applicability of the present research. The ANSYS*TM mechanical APDL software has been used for the numerical modeling and analysis of the jacket structure. The dynamic response is obtained under dynamic seismic and ice loadings, and the model is attached with a TMD. Parameters of the TMD are studied based on the 'Principle of Absorption (PoA)' to reduce the displacement of the deck level in the jacket structure. Finally, in our results, the proper mass ratio and damping ratios are obtained for various earthquake and ice loads.

Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System (아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 성능에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeong-Bae
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and ice fraction of ice slurry were varied from 800 to 3500 kg/$m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. Through the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

Evalulation of the Tower Fatigue Loads by Ice Formation on Rotor Blades (로터 블레이드 결빙에 의한 타워 피로하중 평가)

  • Kim, Jeong-Gi;Park, Sun-Ho;Bang, Jo-Hyug;Jung, Jong-Hun;Kim, Sang-Dug;Ryu, Ji-Yune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Primarily, tower loads of a wind turbine arise from aerodynamic effect and a top head mass. But sometime asymmetric loads of rotor also affect on the tower loads. Especially ice formation on two blades out of three causes the asymmetric loads, because the ice formation on blades lead to large rotating mass imbalance. This rotating mass imbalance of rotor affects tower fatigue loads. So design load cases of ice formation on blade should be considered in the fatigue design loads of the tower according to GL guideline 2010. This paper describes the change of tower fatigue loads following increase of tower height in the condition of ice formation. Finally, the optimal operation strategy is examined in order to reduce tower fatigue design loads.

Ice Making Characteristics according to Shape and Diameter on Ice-on-Coil Tube (관외착빙형 제빙관의 형태 및 관경 변화에 따른 제빙 특성)

  • Park, K.W.;Jeong, E.H.;Hwang, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.32-39
    • /
    • 2012
  • The study experimented to understand ice-on-coil type ice making characteristics on to 3 kinds of circular tube, oval tube and small diameter tube using ice maker. The experiment were carried out under various conditions, that used brine temperature($-10^{\circ}C$, $-6^{\circ}C$), brine flow rate(1.0m/s, 1.8m/s) and inlet water temperature ($6^{\circ}C$, $12^{\circ}C$) etc. Mass of ice per ice making area increased according to the decrease of the brine temperature and inlet water temperature, but that was increased according to the increase of the brine flow rate. Oval ice making tube produced ice 1.11 to 2.46 times that of 9mm circular ice making tube, and 3mm small diameter ice making tube produced ice 1.06 to 1.51 times that of 9mm circular ice making tube.

Ice Making Characteristics at Ice-on-coil Type Following Change of Ice Making Environment (제빙환경 변화에 따른 아이스 온 코일의 제빙특성)

  • Jung, Eun-Ho;Park, Ki-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.319-323
    • /
    • 2008
  • The study experimented to understand the ice making characteristics on to kinds of round tube type and oval tube type using ice maker. The experiment were carried out under various conditions, that used brine temperature $-10{\sim}-6^{\circ}C$, brine flow rate $1.0{\sim}1.8\;m/s$ and inlet water temperature $6{\sim}-12^{\circ}C$ etc. Mass of ice per making area increased according to the decrease of the brine temperature and inlet water temperature, but that was increased according to the increase of the brine flow rate.

  • PDF

Ice Making Characteristics According to Changing Shape of Ice Making Tube (제빙관의 형태변화에 따른 제빙특성)

  • Jung, Eun-Ho;Park, KI-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.291-296
    • /
    • 2009
  • Ice accumulating system patterned ice-an-coil is the way of refrigerating regenerative materials on the surface of copper-tube inserted into the inside of ice-storage. The study experimented to understand ice-an-coil type ice making characteristics according to changing shape of ice making tube. The experiment were carried out under various conditions, that used brine temperature($-l0^{\circ}C$, $-6^{\circ}C$) brine flow rate(l.0m/s, 1.8m/s) and inlet water temperature($6^{\circ}C$, $12^{\circ}C$) etc. Mass of ice per making area increased according to the decrease of the brine temperature and inlet water temperature, but that was increased according to the increase of the brine flow rate. And I set up two hypotheses and compared the capacity of ice-making of the two cases; each had the same thermal area and one had an round-shaped copper tube but the other had an oval-shaped copper tube.