• 제목/요약/키워드: Mass flowmeter

검색결과 24건 처리시간 0.018초

자동차 에틸렌글리콜 부동액의 혼합 농도 측정 장치 개발 (Device Development of Mixture Concentration of Ethylene Glycol Antifreeze Coolant for Vehicles)

  • 이대웅;이은웅
    • 설비공학논문집
    • /
    • 제28권8호
    • /
    • pp.331-336
    • /
    • 2016
  • This study presents a coolant density calculation device and its corresponding method by using a mass flowmeter and the LabVIEW program. The method can be easily measured with a mixture of coolant and by calculating the percentage of ethylene-glycol without additional investment. The cooling water is very important in a vehicle to protect the engine, and the cooling performance is affected by the mixture concentration and coolant density. The coolant density calculation device measures the mixed concentration in the anti-freeze cooling mixture made from distilled water and ethylene-glycol in real time with the mass flowmeter that is commonly attached to the radiator or heater core. The calculation program for the mixture concentration percentage was developed using the LabVIEW software. The correlation between experimental results and the calculation was conducted for a range of temperature from 40 to $90^{\circ}C$ and by varying the mixture ratio of distilled water and ethylene-glycol. As a result, the anti-freeze coolant concentration in the volume percentage is able to monitor the coolant density in a timely basis by implementing a mixture concentration calculation program without the need for additional equipment investment. The results of the calculation for the mixture concentration level show a maximum 2.7% deviation compared to the experimental results.

Teensy 마이크로 컨트롤러 기반 산소 유량 제어기 개발 및 성능평가 (Development and Evaluation of a Teensy Microcontroller-based O2 Mass Flow Controller)

  • 유민상;장연숙;김무환;조성보
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권4호
    • /
    • pp.193-200
    • /
    • 2021
  • Flowmeter and oxygen sensors are listed in COVID-19 essential medical devices. This article reports a Teensy microcontroller-based Oxygen mass flow controller (MFC), core part of the oxygen respirator or extracorporeal membrane oxygenation (ECMO). The developed MFC consisting of the microcontroller, MEMS flow sensor, and solenoid valve was able to accurately control 0 to 100 sccm of oxygen flow rate. The pressure of vacuum chamber increased proportionally to the flow rate (0.998 of Pearson correlation coefficient). The experimental results proved that the developed MFC exhibits comparable performance to a commercial MFC in accuracy, settling time, linearity with pressure, and repeatability of oxygen mass flow control. It is expected that this simple and cheap MFC is utilized for oxygen therapy against the severe acute respiratory syndrome coronavirus 2.

수평관내 초임계 영역의 Co2 냉각 열전달 특성 (Heat Transfer Characteristics During Gas Cooling Process of Carbon Dioxide in a Horizontal Tube)

  • 손창효;이동건;오후규;정시영;김영률
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.289-295
    • /
    • 2004
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flowmeter, an evaporator, and a gas cooler(test section). The main components of the water loop consist of a variable-speed pump, an isothermal tank, and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal stainless steel tube of the outer diameter of 9.53mm and of the inner diameter of 7.75mm. The length of the test section is 6m. The refrigerant mass fluxes were 200∼300kg/(m2$.$s) and the inlet pressure of the gas cooler varied from 7.5㎫ to 8.5㎫. The main results were summarized as follows : Pressure drop of CO2 increases with increasing gas cooler pressure. The friction factors of CO2 in a horizontal tube show a relatively good agreement with the correlation by Blasius. The heat transfer coefficient of CO2 in transcritical region increases with decreasing gas cooler pressure and decreasing mass flux of CO2. Most of correlations proposed in a transcritical region showed significant deviations with experimental data except for those predicted by Gnielinski.

헬리컬코일형 $CO_2$ 가스쿨러의 열전달과 압력강하 (Heat Transfer and Pressure Drop of $CO_2$ Gas Cooler in a Helically Coiled Tube)

  • 경남수;유태근;손창효;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.246-247
    • /
    • 2005
  • The paper presents the heat transfer characteristics during cooling process of carbon dioxide($CO_2$) in a helically coiled tube. The main components of the apparatus consist of a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section with the inner diameter 4.55 [mm] is a tube in tube type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The main results were summarized as follows : The heat transfer coefficient increases with respect to the decrease of the gas cooler pressure in a supercritical region and the increase of the refrigerant mass flux. The pressure drop decreases in increases of the gas cooler pressure and increases with respect to increases the refrigerant mass flux.

  • PDF

수소충전유량 현장교정시스템의 개발 (Development of Hydrogen Flow Field Standard in Hydrogen Refueling Station)

  • 강웅;신진우;이생희;윤병로;백운봉
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.684-691
    • /
    • 2022
  • Hydrogen fuel cell electric vehicles are typically refueled at a wide range of temperatures (-40℃ to 85℃) in the hydrogen refueling station in accordance with the worldwide accepted standard. Currently, there is no traceable method by which to verify and calibrate the hydrogen flowmeters to be used at hydrogen refueling stations except for a water calibration process as a conventional method. KRISS hydrogen field test standard based on the gravimetric principle was developed to verify the measurement accuracy of the mass flowmeter to be used at hydrogen refueling stations for the first time in Korea.

열량형 질량 유량계의 성능 평가 (A Study on the Performance of Thermal Mass Flowmeter)

  • 최용문;박경암;윤복현;장석;최해만;이생희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.595-600
    • /
    • 2001
  • Thermal mass flow meter(TMF) and thermal mass flow controller(MFC) were used to measure and to control the mass flow rate of gases. TMF and MFC were designed for specified working pressure and gas. For the case of different working pressure and gases, the flow rate measurement accuracy decreased dramatically. In this study, a TMF and MFC was tested with three different gases and pressure range from 0.2 MPa up to 1.0 MPa. Effect of specific heat causes to increase flow measurement error as much as ratio of specific heat compared with reference gas. Changing of pressure causes to increase flow rate measurement error about -0.2% as the working pressure decreased 0.1 MPa. Response time of MFC was below 3.12 s for the case of increasing of flow rate. But the response time was increased up to 6.92 s for the case of decreasing of flow rate. When the solenoid valve was fully closed, a initial delay time of output of MFC was increased up to 1.36 s.

  • PDF

초임계 영역내 $CO_2$ 냉각 열전달과 압력강하 분석 (Analysis of Heat Transfer and Pressure Drop During Gas Cooling Process of Carbon Dioxide in Transcritical Region)

  • 손창효;이동건;정시영;김영률;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.65-74
    • /
    • 2004
  • The heat transfer coefficient and pressure drop of $CO_2$(R-744) during gas cooling Process of carbon dioxide in a horizontal tube were investigated experimentally and theoretically. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop consist of a receiver. a variable-speed pump. a mass flowmeter, an evaporator. and a gas cooler(test section). The main components of the water loop consist of a variable-speed Pump. an constant temperature bath. and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus The test section consists of smooth, horizontal stainless steel tube of 9.53 mm outer diameter and 7.75 mm inner diameter. The length of test section is 6 m. The refrigerant mass fluxes were 200 ~ 300 kg/($m^2{\cdot}s$) and the inlet pressure of the gas cooler varied from 7.5 MPa to 8.5 MPa. The main results were summarized as follows : The predicted correlation can evaluated the R-744 exit temperature from the gas cooler within ${\pm}10%$ for most of the experimental data, given only the inlet conditions. The predicted gas cooley capacity using log mean temperature difference showed relatively food agreement with gas cooler capacity within ${\pm}5%$. The pressure drop predicted by Blasius estimated the pressure drop on the $CO_2$ side within ${\pm}4.3%$. The predicted heat transfer coefficients using Gnielinski's correlation evaluated the heat transfer coefficients on the $CO_2$ side well within the range of experimental error. The predicted heat transfer coefficients using Gao and Honda's correlation estimated the heat transfer coefficients on the coolant side well within ${\pm}10\;%$. Therefore. The predicted equation's usefulness is demonstrated by analyzing data obtained in experiments.

헬리컬 코일관 내 초임계 $CO_2$의 압력강하 특성 (Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube)

  • 유태근;김대희;노건상;구학근;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.216-221
    • /
    • 2005
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a helically coiled tube were investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a double pipe type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a copper tube with the inner diameter of 4.85 [mm], the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were 200${\sim}$600 [kg/$m^2$s] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows: The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

파라핀 슬러리를 사용한 다칩모듈의 냉각특성 (Cooling characteristics of the multichip module using paraffin slurry)

  • 조금남;최민구
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.888-898
    • /
    • 1998
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water and paraffin slurry. The experimental parameters are mass fraction of 2.5 ~ 7.5% for paraffin slurry, heat flux of 10 ~ 40 W/cm$^{2}$ for the simulated VLSI chips and Reynolds numbers of 5,300 ~ 15,900. The apparatus consisted of test section, paraffin slurry maker, pump, constant temperature baths, flowmeter, etc. The test section made of in-line, four-row array of 12 heat sources for simulating 4 * 3 multichip module which was flush mounted on the top wall of a horizontal rectangular channel with the aspect ratio of 0.2. The inlet temperature was 20 deg. C for all experiments. The size of paraffin slurry was constant as 10 ~ 40 .mu.m befor and after the experiment. The chip surface temperatures for paraffin slurry with the mass fraction of 7.5% showed lower by 16 deg. C than those for water when the heat flux is 40 W/cm$^{2}$. The local heat transfer coefficients for the paraffin slurry with the mass fraction of 7.5% were larger by 17 ~ 25% than those for water at the first and the fourth row. The local heat transfer coefficients reached to a row-number-independent, thermally fully developed value approximately after the third row. The local Nusselt numbers at the fourth row for paraffin slurry with the mass fraction of 7.5% were larger by 23 ~ 29% than those for water.

내경 1.77 mm관내 R-22와 R-410A의 응축열전달 (The Condensation Heat Transfer of R-22 and R-410A in an Inner Diameter Tube of 1.77 mm)

  • 손창효;노건상
    • 한국가스학회지
    • /
    • 제12권1호
    • /
    • pp.48-53
    • /
    • 2008
  • 본 연구는 세관내 R-22와 R-410A의 응축 열전달 계수를 실험적으로 조사하였다. 냉매 순환루프의 주요 구성품은 수액기, 변속 액펌프, 질량유량계, 증발기(예열기), 응축기(시험부)로 구성된다. 시험부는 평활, 수평 동관으로 내관의 내경과 외경이 각각 1.77 mm와 3.38 mm이다. 냉매 질량유속은 $450{\sim}1050\;kg/(m^2s)$이고, 입출구 평균건도는 $0.05{\sim}0.095$이다. 주요 실험결과를 요약하면, 응축 열전달 계수는 질량유속과 건도이 증가할수록 증가하였고, R-410A의 응축 열전달 계수가 R-22에 비해 약간 높았다. 종래의 상관식과 비교한 결과, 저건도와 저질량유속을 제외하고는 실험값과 종래의 상관식으로 예측한 값의 차이가 큰 것으로 나타났다.

  • PDF