• Title/Summary/Keyword: Mass energy

Search Result 3,841, Processing Time 0.026 seconds

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.12-15
    • /
    • 2014
  • Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uranium contained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performed by isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation using extraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration were applied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil and water samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwater samples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoring uranium in environmental samples with high analytical reliability.

Markov chain-based mass estimation method for loose part monitoring system and its performance

  • Shin, Sung-Hwan;Park, Jin-Ho;Yoon, Doo-Byung;Han, Soon-Woo;Kang, To
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1555-1562
    • /
    • 2017
  • A loose part monitoring system is used to identify unexpected loose parts in a nuclear reactor vessel or steam generator. It is still necessary for the mass estimation of loose parts, one function of a loose part monitoring system, to develop a new method due to the high estimation error of conventional methods such as Hertz's impact theory and the frequency ratio method. The purpose of this study is to propose a mass estimation method using a Markov decision process and compare its performance with a method using an artificial neural network model proposed in a previous study. First, how to extract feature vectors using discrete cosine transform was explained. Second, Markov chains were designed with codebooks obtained from the feature vector. A 1/8-scaled mockup of the reactor vessel for OPR1000 was employed, and all used signals were obtained by impacting its surface with several solid spherical masses. Next, the performance of mass estimation by the proposed Markov model was compared with that of the artificial neural network model. Finally, it was investigated that the proposed Markov model had matching error below 20% in mass estimation. That was a similar performance to the method using an artificial neural network model and considerably improved in comparison with the conventional methods.

Dynamic Characteristics and Piezoelectric Effect of Energy Harvesting Block Structures with Different Shapes (다양한 형상 변화에 따른 에너지 수확용 블록 구조의 동적 특성 및 압전 효과)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.379-387
    • /
    • 2012
  • This study investigates free vibration characteristics of new energy harvesting multi-layer block structures with different geometrical shapes using solid and shell finite elements and evaluate their piezoelectric effect on experiments. The two and three-dimensional finite element (FE) delamination models for block structures described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the entire vibration mode shape. The FE model using ABAQUS is used for studying free vibrations of multi-layer block structures for various tip mass and PZT. In particular, new results reported in this paper are focused on the significant effects of the global and local vibration modes for various parameters, such as size of block shape, existence of tip mass and hole, and location of tip mass and PZT. In addition, we evaluate the power generation capacity of developed energy block structures through a laboratory-scale experiment.

A Comparison of Energy Intake and Energy Expenditure in Normal-Weight and Over-Weight Korean Adults (정상체중 성인과 과체중 성인의 에너지 섭취량, 휴식대사량, 활동대사량 비교연구)

  • 박정아;김기진;윤진숙
    • Korean Journal of Community Nutrition
    • /
    • v.9 no.3
    • /
    • pp.285-291
    • /
    • 2004
  • The purpose of this study was to compare the energy expenditure and energy intake of normal-weight and overweight Korean adults. We recruited 242 adults to determine resting energy expenditure, physical activity and energy intake. Resting energy expenditure was measured by indirect calorimetry. Energy intake for consecutive two days was assessed by 24 hour recall method. Daily activity pattern for 24 hour was collected from each subject. Body weight, lean body mass and percentage body fat were measured by INBODY 3.0. The subject were divided into normal ($20\leqBMI$ < 25) and overweight ($BMI \geq 25$) groups by BMI. There was no significant difference in intake of energy between two groups. Energy intake of each group was lower than the 7th Korean RDA of energy. Overweight subjects showed significantly lower REE/kg body weight. However, REE/kg lean body mass (LBM) did not differ between the two groups. Total activity energy was significantly higher in the overweight group compared to the normal group. Daily activity coefficient of overweight group in male was lower than that of normal group. Daily activity coefficient was almost same in two female groups. LBM was highly correlated with REE and total energy expenditure. We concluded that the overweight group consumed more energy than the normal group due to the heavier body weight.

Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation

  • Lu, Lei;Fermandois, Gaston A.;Lu, Xilin;Spencer, Billie F. Jr.;Duan, Yuan-Feng;Zhou, Ying
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.589-613
    • /
    • 2019
  • Cables are prone to vibration due to their low inherent damping characteristics. Recently, negative stiffness dampers have gained attentions, because of their promising energy dissipation ability. The viscous inertial mass damper (termed as VIMD hereinafter) can be viewed as one realization of the inerter. It is formed by paralleling an inertial mass part with a common energy dissipation element (e.g., viscous element) and able to provide pseudo-negative stiffness properties to flexible systems such as cables. A previous study examined the potential of IMD to enhance the damping of stay cables. Because there are already models for common energy dissipation elements, the key to establish a general model for IMD is to propose an analytical model of the rotary mass component. In this paper, the characteristics of the rotary mass and the proposed analytical model have been evaluated by the numerical and experimental tests. First, a series of harmonic tests are conducted to show the performance and properties of the IMD only having the rotary mass. Then, the mechanism of nonlinearities is analyzed, and an analytical model is introduced and validated by comparing with the experimental data. Finally, a real-time hybrid simulation test is conducted with a physical IMD specimen and cable numerical substructure under distributed sinusoidal excitation. The results show that the chosen model of the rotary mass part can provide better estimation on the damper's performance, and it is better to use it to form a general analytical model of IMD. On the other hand, the simplified damper model is accurate for the preliminary simulation of the cable responses.

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Calculation Formula for Effective Photon Energy in kV X-ray Beam of Mammography (유방촬영의 kV X-선 빔에서 유효광자에너지에 대한 계산식)

  • Young-On Park;Sang-Hun Lee;Jong-Eon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.507-514
    • /
    • 2023
  • The purpose of this study is to find a formula that can easily calculate the effective photon energy in the X-ray beam of mammography. The tube voltage measured for each set tube voltage was obtained using the X2 MAM Sensor. The mass attenuation coefficient for aluminum of the aluminum filter was obtained from the half value layer measurement from each measured tube voltage X-ray beam. The mass attenuation coefficient of aluminum obtained from each measured tube voltage X-ray beam was corresponded to the mass attenuation coefficient of aluminum for each photon energy obtained from NIST. The photon energy corresponding to the matching mass attenuation coefficient was determined as the effective photon energy. The formula for calculating the determined effective photon energy was obtained by polynomial matching of the effective photon energy for each tube voltage in the Origin pro 2019b statistical program as y = 28.98968-1.91738x + 0.07786x2-0.000946717x3. Here, x is the measuring tube voltage and y is the effective photon energy. The calculation formula of the effective photon energy of the mammography X-ray beam obtained in this study is considered to be very useful in obtaining the interaction coefficient between the X-ray beam and a certain substance in clinical practice.

Association between energy intake and skeletal muscle mass according to dietary patterns derived by cluster analysis: data from the 2008 ~ 2010 Korea National Health and Nutrition Examination Survey (군집분석으로 도출한 식사패턴별 에너지 섭취량과 골격근육량의 연관성 분석 : 2008 ~ 2010년 국민건강영양조사 자료를 활용하여)

  • Jang, Bo Young;Bu, So Young
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.581-592
    • /
    • 2019
  • Purpose: This study investigated major dietary patterns among healthy Korean adults using cluster analysis and analyzed the relationship between energy intake and skeletal muscle mass. Methods: This study was conducted using the data from the 2008 ~ 2010 Korea National Health and Nutrition Survey. The data of 7,922 subjects aged 30 years and over, without any missing values, were included in the final analysis. K-means cluster analyses were conducted to identify the dietary patterns of the study subjects, which were based on the energy intake from 21 food groups using a 24-h recall method. The changes in energy intake with each dietary pattern, according to quartiles of skeletal muscle mass, were investigated. Results: Three dietary patterns were identified for both men and women: 'Flour, Animal fat', 'White rice' and 'Healthy mixed diet'. The association between energy intake and skeletal muscle mass for both men and women was significant only in the 'White rice' dietary pattern. In the 'White rice' pattern, the energy intake increased up to > 300 kcal from the lowest to the highest quartile of skeletal muscle mass after adjustment for covariates. Within the 'White rice' pattern, skeletal muscle mass was linearly associated with energy intake in all the age groups in men. Conclusion: Energy intake was significantly associated with changes in skeletal muscle mass only in the 'White rice' pattern. Furthermore, the degree of association between the change in skeletal muscle mass and energy intake differed according to gender. These results indicate that the association between skeletal muscle mass and energy intake may be specific to Korean people who are accustomed to a traditional Korean diet.

VIBRATION OF A CIRCULAR PLATE WITH A CONCENTRATED MASS ATTACHED ON A RADIUS

  • Lee, Jang-Moo;Hong, Jin-Sun
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • An analytical method is presented for predicting the effect of a local deviation in the form of a concentrated mass along a radial line on the free bending vibration characteristics of a nearly axisymmetric circular plate. The approach is based on the Rayleigh-Ritz method and the expression of local deviation of the concentrated radial mass as the variation of heaviside unit step function. The effects of the concentrated mass on the natural frequencies and mode shapes of the plate are predicted with a proposed nondimensional mass parameter.

Basic Design and Sensitivity Analysis of 3 MWth Chemical Looping Combustion System for LNG Combustion and Steam Generation (LNG 연소 및 스팀생산을 위한 3 MWth 급 매체순환연소 시스템의 기본설계 및 민감도 분석)

  • RYU, HO-JUNG;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;KIM, DAEWOOK;KIM, DONG-WON;LEE, GYU-HWA;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.374-387
    • /
    • 2021
  • Basic design of 3 MWth chemical looping combustion system for LNG combustion and steam generation was conducted based on the mass and energy balance and the previous reactivity test results of oxygen carrier particles. Process configuration including fast fluidized bed (air reactor), loop seal and bubbling fluidized bed (fuel reactor) was confirmed and their dimensions were determined by mass balance. Then, the external fluidized bed heat exchanger (FBHE) was adopted based on the energy balance to extract heat from the system. The optimum reactor design and operating condition was confirmed with sensitivity analysis by modifying system configuration based on the mass and energy balance.