DOI QR코드

DOI QR Code

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Sujin (CKD Research Institute) ;
  • Song, Kyuseok (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Received : 2013.12.05
  • Accepted : 2013.12.10
  • Published : 2014.03.24

Abstract

Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uranium contained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performed by isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation using extraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration were applied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil and water samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwater samples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoring uranium in environmental samples with high analytical reliability.

Keywords

References

  1. United Nations, United Nations Scientific Committee on the Effect of Atomic Radiation; New York, 1993.
  2. U.S. EPA (United States Geological Survey), Integrated risk information system (IRIS) on uranium, soluble salt, Cincinnati, 1993.
  3. USGS (United States Geological Survey), Occurrence of selected radionuclides in ground water used for drinking water in the United States, 2001
  4. Kim, B.; Cho, G.; Kim. S. The Annual Report of Busan Metropolitan city Institute of Health & Environment, 2012, 22, 91.
  5. Schoenberg, R.; von Blanckenburg, F. Int. J. Mass Spectrom. 2005, 242, 257. https://doi.org/10.1016/j.ijms.2004.11.025
  6. Chan, G. C.-Y.; Hieftje, G. M. Spectrochim. Acta Part B 2006, 61, 642. https://doi.org/10.1016/j.sab.2005.09.007
  7. Cohen, A. S.; Belshaw, N. S.; O'Nions, R. K. Int. J. Mass Spectrom. Ion Process 1992, 116, 71. https://doi.org/10.1016/0168-1176(92)80020-2
  8. Heumann, K. G.; Eisenhut, S.; Gallus, S.; Hebeda, E. H.; Nusko, R.; Vengosh, A.; Walczyk, T. Analyst 1995, 120, 1291. https://doi.org/10.1039/an9952001291
  9. Rubin, K. H. Chemical Geology 2001, 175, 723. https://doi.org/10.1016/S0009-2541(00)00340-5
  10. Richter, S.; Goldberg, S. A. Int. J. Mass Spectrom. 2003, 229, 181. https://doi.org/10.1016/S1387-3806(03)00338-5
  11. Donohue, D. L. J. Alloy Compd. 1998, 271-273, 11. https://doi.org/10.1016/S0925-8388(98)00015-2
  12. Stetzer, O.; Betti, M.; van Geel, J.; Erdmann, N.; Kratz, J.; Schenkel, R.; Trautmann, N. Nuclear Inst. and Methods in Physics Research A 2004, 525, 582. https://doi.org/10.1016/j.nima.2004.01.079
  13. Kraiem, M.; Richter, S.; Kuhn, H.; Stefaniak, E. A.; Kerckhove, G.; Truyens, J.; Aregbe, Y. Anal. Chem. 2011, 83, 3011. https://doi.org/10.1021/ac103153k
  14. Aggarwal, S. K.; Chourasiya, G.; Duggal, R. K.; Raoi, R.; Jain, H. C. Int. J. Mass Spectrom. Ion Process 1986, 69, 137. https://doi.org/10.1016/0168-1176(86)87028-8
  15. Lee, C.; Suzuki, D.; Saito-Kokubu, Y.; Esaka, F.; Margara, M.; Kimura, T. Int. J. Mass Spectrom. 2012, 314, 57. https://doi.org/10.1016/j.ijms.2012.02.006
  16. Park, J.; Choi, I.; Park, S.; Lee, M.; Song, K. Bull. Korean Chem. Soc. 2011, 32, 4327. https://doi.org/10.5012/bkcs.2011.32.12.4327
  17. Park, J.; Choi, I.; Song, K. Mass Spectrom. Lett. 1, 1, 17.
  18. Suzuki, D.; Kokubu, Y. S.; Sakurai, S.; Lee, C. G.; Magara, M.; Iguchi, K.; Kimura, T., Int. J. Mass. Spectrom. 2010, 294, 23. https://doi.org/10.1016/j.ijms.2010.04.007
  19. Burger, S.; Essex, R. M.; Mathew, K. J.; Richter, S.; Thomas, R. B. Int. J. Mass Spectrom. 2010, 294, 65. https://doi.org/10.1016/j.ijms.2010.05.003
  20. Lee, M. H.; Choi, G. S.; Cho, Y. H.; Lee, C. W.; Shin, H. S. J. Environ. Radioact. 2001, 57, 105. https://doi.org/10.1016/S0265-931X(01)00014-5

Cited by

  1. Experimental evaluation of the detection methods of thermal ionization mass spectrometry for isotopic analysis of ultra-trace level uranium vol.137, 2018, https://doi.org/10.1016/j.microc.2017.11.013
  2. Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS) vol.160, 2016, https://doi.org/10.1016/j.talanta.2016.08.006
  3. Development of environmental sample analysis technique in KAERI: bulk analysis and establishment of clean laboratory facility (CLASS) vol.307, pp.3, 2016, https://doi.org/10.1007/s10967-015-4372-2