• Title/Summary/Keyword: Mass distribution

Search Result 2,365, Processing Time 0.034 seconds

A Numerical Study of the Effects of Mass Flow Rate Distribution on the Flow Characteristics in a Two Dimensional Multi-Jet with Crossflow of the Spent Fluid (직교류를 가지는 이차원 다중젯트에서 유량분포가 유동특성에 미치는 영향)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1940-1949
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Results show that a fully developed laminar flow exists above a certain Reynolds number whose exact value depends upon the mass flow rate distribution. AS the Reynolds number increases, the flow becomes transitional from downstream and finally a fully developed turbulent flow forms in the jet-flow region. The critical Reynolds number where the fully developed turbulent flow forms is quite dependent upon the distribution of mass-flow rate. One interesting result is that the distribution of the skin friction coefficient along the inpingement plate in the jet-flow region shows a consistent dependency on the Reynolds number, i.e. inversely proportional to the square root of the Reynolds number, regardless of flow regime.

Thermal and Hydrostatic Structure of the Protoplanetary Nebula : Influences of Wind Strengths, Nebular Mass Distributions, and Stellar Wind Velocity Laws

  • Yun, Young-Seok;Emori, Hiroyuki;Nakazawa, Kiyoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2010
  • The structures of the protoplanetary nebula have been examined under various conditions of the stellar wind and the mass distribution of the nebula by assuming that the nebula is steady and geometrically thick. T Tauri stars commonly accompany with disks as well as the stellar wind. Therefore, the nebula around T Tauri stars should be influenced by the stellar wind. The results are summarized as follows ; The height of the geometrical surface of the nebula is suppressed by the dynamical pressure of the wind but depends very weakly on the wind strength. The surface becomes higher slightly when the wind strength becomes weaker. Furthermore, the dependency of the nebular height on the mass distribution of the nebula is also weak. As a natural result of the above, the temperature distribution in the nebula is insensitive to the wind strength and the mass distribution of the nebula, too. Thus, we can conclude that the temperature and geometrical surface height of the nebula under the stellar wind does not depend on neither the wind properties nor the mass distribution of nebula.

  • PDF

The Characteristics of Two-Phase Flow Distribution in a Bottom Dividing Header

  • Im, Yang-Bin;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1195-1202
    • /
    • 2004
  • In this paper an experimental study was investigated for two-phase flow distribution in compact heat exchanger header. A test section was consisted of the horizontal bottom dividing header($\phi$: 5 mm, L: 80 mm) and 10 upward circular mini channels ($\phi$: 1.5 mm, L: 850 mm) using an acrylic tube. Three different types of tube intrusion depth were tested for the mass flux and inlet mass quality ranges of 50 - 200 kg/$m^2$s and 0.1 - 0.3, respectively. Air and water were used as the test fluids. The distribution of vapor and liquid is obtained by measurement of the total mass flow rate and the calculation of the quality. Two-phase flow pattern was observed, and pressure drop of each channel was measured. By adjusting the intrusion depth of each channel an uniform liquid flow distribution through the each channel was able to solve the mal-distribution problem.

Development of an Algorithm for Predicting the Thermal Distribution by using CT Image and the Specific Absorption Rate

  • Hwang, Jinho;Kim, Aeran;Kim, Jina;Seol, Yunji;Oh, Taegeon;Shin, Jin-sol;Jang, Hong Seok;Kim, Yeon Sil;Choi, Byung Ock;Kang, Young-nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1584-1588
    • /
    • 2018
  • During hyperthermia therapy, cancer cells are heated to a temperature in the range of $40{\sim}45^{\circ}C$ for a defined time period to damage these cells while keeping healthy tissues at safe temperatures. Prior to hyperthermia therapy, the amount of heat energy transferred to the cancer cells must be predicted. Among various non-invasive methods, the thermal prediction method using the specific absorption rate (SAR) is the most widely used method. The existing methods predict the thermal distribution by using a single constant for the mass density in one organ through assignment. However, because the SAR and the bio heat equation (BHE) vary with the mass density, the mass density of each organ must be accurately considered. In this study, the mass density distribution was calculated using the relationship between the Hounsfield unit and the mass density of tissues in preceding research. The SAR distribution was found using a quasi-static approximation to Maxwell's equation and was used to calculate the potential distribution and the energy distributions for capacitive RF heating. The thermal distribution during exposure to RF waves was determined by solving the BHE with consideration given to the considering contributions of heat conduction and external heating. Compared with reference data for the mass density, our results was within 1%. When the reconstructed temperature distribution was compared to the measured temperature distribution, the difference was within 3%. In this study, the density distribution and the thermal distribution were reconstructed for the agar phantom. Based on these data, we developed an algorithm that could be applied to patients.

SURFACE BRIGHTNESS AND MASS DISTRIBUTION OF THE LATE TYPE SPIRAL GALAXY NGC 2403

  • Lee, Yoo-Mi;Chun, Mun-Suk
    • Journal of The Korean Astronomical Society
    • /
    • v.22 no.1
    • /
    • pp.31-41
    • /
    • 1989
  • Luminosity profile of the late type spiral galaxy NGC 2403 was obtained using the PDS scan of the plate. Some physical parameters (scale length, total magnitude, central brightness, disk to bulge ratio and concentric indices) were calculated from the brightness distribution. Total mass and the mass to luminosity ratio were estimated from the fitting of various mass models.

  • PDF

Distribution Dynamics and Proposed Determinants: Exploring Morphological, Clinical Laboratory, and Lifestyle Factors in the Coexistence of Age-Related Skeletal Muscle Mass Loss and Obesity among Young Men: A Nationwide Cross-Sectional Study

  • Jongseok Hwang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.19 no.1
    • /
    • pp.31-41
    • /
    • 2024
  • PURPOSE: This study examined the distribution dynamics and proposed determinants, including morphological measurements, clinical laboratory tests, and lifestyle factors among young Korean men aged 20 to 29 years with the coexistence of age-related loss of skeletal muscle mass and obesity (CALSMO). METHODS: Six hundred and sixty-six participants were divided into two groups based on their skeletal muscle mass index, with 12 individuals categorized in the CALSMO group and the remaining 654 in the normal group. The proposed determinants variables consisted of three main components: morphological measurements, clinical laboratory tests, and lifestyle factors. The morphological measurement variables were height, weight, body mass index, waist circumference, and skeletal muscle mass index. The clinical laboratory tests were fasting glucose, triglyceride, total cholesterol levels, and systolic and diastolic blood pressure. The lifestyle factors considered were alcohol consumption and tobacco use. Complex sampling analysis was performed for the evaluation. RESULTS: The distribution dynamics were determined to be 1.81(1.02-3.18) %. Morphological factors, such as height, weight, body mass index, waist circumference, and skeletal muscle mass index, showed significant differences (p < .05). The clinical laboratory test variables, specifically the fasting glucose, triglyceride, and total cholesterol levels, also exhibited significant differences (p < .05). The lifestyle factor, alcohol consumption, also showed a significance (p < .05). CONCLUSION: This study provides insights into the distribution dynamics. The proposed determinants in young Korean individuals with CALSMO are height, weight, body mass index, waist circumference, skeletal muscle mass index, fasting glucose, triglyceride, total cholesterol levels, and alcohol consumption.

Effects of Prosthetic Mass Distribution on Musculoskeletal System during Amputee Gait (의지 보행시 의지 무게 분포가 근골격계에 미치는 영향)

  • Bae, Tae-Soo;Choi, Hwan;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.130-137
    • /
    • 2007
  • The optimized prosthetic mass distribution was a controversial problem in the previous studies because they are not supported by empirical evidence. The purpose of the present study was to evaluate the effect of prosthetic mass properties by modeling musculoskeletal system, based on the gait analysis data from two above-knee amputees. The joint torque at hip joint was calculated using inverse dynamic analysis as the mass was changed in knee and foot prosthetic components with the same joint kinematics. The results showed that the peak flexion and abduction torque at the hip joint were 5 Nm and 15 Nm when the mass of the knee component was increased, greater than the peak flexion and abduction torque of the control group at the hip joint, respectively. On the other hand, when the mass of the foot component was increased, the peak flexion and abduction torque at the hip joint were 20 Nm and 15 Nm, greater than the peak flexion and abduction torque of the control, respectively. The hip flexion torque was 4.71-fold greater and 7.92-fold greater than the hip abduction torque for the knee mass increase and the foot mass increase on the average, respectively. Therefore, we could conclude that the effect of foot mass increase was more sensitive than that of knee mass increase for the hip flexion torque. On the contrary, the mass properties of the knee and foot components were not sensitive for the hip abduction torque. In addition, optimized prosthetic mass and appropriate mass distributions were needed to promote efficiency of rehabilitation therapy with consideration of musculoskeletal systems of amputees.

TIDAL DENSITIES OF GLOBULAR CLUSTERS AND THE GALACTIC MASS DISTRIBUTION

  • Lee, Hyung-Mok
    • Journal of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.97-105
    • /
    • 1990
  • The tidal radii of globular clusters reflect the tidal field of the Galaxy. The mass distribution of the Galaxy thus may be obtained if the tidal fields of clusters are well known. Although large amounts of uncertainties in the determination of tidal radii have been obstacles in utilizing this method, analysis of tidal density could give independent check for the Galactic mass distribution. Recent theoretical modeling of dynamical evolution including steady Galactic tidal field shows that the observationally determined tidal radii could be systematically larger by about a factor of 1.5 compared to the theoretical values. From the analysis of entire sample of 148 globular clusters and 7 dwarf spheroidal systems compiled by Webbink (1985), we find that such reduction from observed values would make the tidal density (the mean density within the tidal radius) distribution consistent with the flat rotation curve of our Galaxy out to large distances if the velocity distribution of clusters and dwarf spheroidals with respect to the Galactic center is isotropic.

  • PDF

Improved Algorithms for the Identification of Yeast Proteins and Significant Transcription Factor and Motif Analysis

  • Lee Seung-Won;Hong Seong-Eui;Lee Kyoo-Yeol;Choi Do-Il;Chung Hae-Young;Hur Cheol-Goo
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.87-93
    • /
    • 2006
  • With the rapid development of MS technologiesy, the demands for a more sophisticated MS interpretation algorithm haves grown as well. We have developed a new protein fingerprinting method using a binomial distribution, (fBIND). With the fBIND, we improved the performance accuracy of protein fingerprinting up to the maximum 49% (more than MOWSE) and 2% than(at a previous binomial distribution approach studied by of Wool et al.) as compared to the established algorithms. Moreover, we also suggest a the statistical approach to define the significance of transcription factors and motifs in the identified proteins based on the Gene Ontology (GO). Abbreviations: fBIND, fingerprinting using binomial distribution; GO, Gene Ontology; MS, Mass Spectrometry; PMF, peptide mass fingerprinting; nr, nonredundant; SGD, Saccharomyces Genome Database

Distribution of Air-Water Two-Phase Flow in a Header of Aluminum Flat Tube Evaporator (알루미늄 평판관 증발기 헤더 내 공기-물 2상류 분지 실험)

  • Kim Nae-Hyun;Shin Tae-Ryong;Sim Yong-Sup
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a round header - flat tube geometry simulating a parallel flow heat exchanger. The number of branch flat tube is thirty. The effects of tube outlet direction, tube protrusion depth as well as mass flux, and quality are investigated. The flow at the header inlet is identified as annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted configuration, most of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, however, most of the water flows through rear part of the header. The protrusion depth, mass flux, or quality does not significantly alter the flow pattern. Possible explanations are provided based on the flow visualization results. Negligible difference on the water flow distribution was observed between the parallel and the reverse flow configuration.