DOI QR코드

DOI QR Code

Distribution Dynamics and Proposed Determinants: Exploring Morphological, Clinical Laboratory, and Lifestyle Factors in the Coexistence of Age-Related Skeletal Muscle Mass Loss and Obesity among Young Men: A Nationwide Cross-Sectional Study

  • Received : 2024.01.25
  • Accepted : 2024.02.05
  • Published : 2024.02.28

Abstract

PURPOSE: This study examined the distribution dynamics and proposed determinants, including morphological measurements, clinical laboratory tests, and lifestyle factors among young Korean men aged 20 to 29 years with the coexistence of age-related loss of skeletal muscle mass and obesity (CALSMO). METHODS: Six hundred and sixty-six participants were divided into two groups based on their skeletal muscle mass index, with 12 individuals categorized in the CALSMO group and the remaining 654 in the normal group. The proposed determinants variables consisted of three main components: morphological measurements, clinical laboratory tests, and lifestyle factors. The morphological measurement variables were height, weight, body mass index, waist circumference, and skeletal muscle mass index. The clinical laboratory tests were fasting glucose, triglyceride, total cholesterol levels, and systolic and diastolic blood pressure. The lifestyle factors considered were alcohol consumption and tobacco use. Complex sampling analysis was performed for the evaluation. RESULTS: The distribution dynamics were determined to be 1.81(1.02-3.18) %. Morphological factors, such as height, weight, body mass index, waist circumference, and skeletal muscle mass index, showed significant differences (p < .05). The clinical laboratory test variables, specifically the fasting glucose, triglyceride, and total cholesterol levels, also exhibited significant differences (p < .05). The lifestyle factor, alcohol consumption, also showed a significance (p < .05). CONCLUSION: This study provides insights into the distribution dynamics. The proposed determinants in young Korean individuals with CALSMO are height, weight, body mass index, waist circumference, skeletal muscle mass index, fasting glucose, triglyceride, total cholesterol levels, and alcohol consumption.

Keywords

References

  1. Donini LM, Busetto L, Bauer JM, et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin Nutr. 2020;39(8):2368-88. https://doi.org/10.1016/j.clnu.2019.11.024
  2. Donini LM, Busetto L, Bischoff SC, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obesity Facts. 2022;15(3):321-35. https://doi.org/10.1159/000521241
  3. Beaudart C, Reginster J-Y, Petermans J, et al. Quality of life and physical components linked to sarcopenia: the SarcoPhAge study. Exp Gerontol. 2015;69:103-10. https://doi.org/10.1016/j.exger.2015.05.003
  4. Nishikawa H, Asai A, Fukunishi S, et al. Metabolic syndrome and sarcopenia. Nutrients. 2021;13(10):3519.
  5. Mager DR, Hager A, Gilmour S. Challenges and physiological implications of sarcopenia in children and youth in health and disease. Curr Opin Clin Nutr Metab Care. 2023;26(6):528-33. https://doi.org/10.1097/MCO.0000000000000969
  6. Hecker J, Freijer K, Hiligsmann M, et al. Burden of disease study of overweight and obesity; the societal impact in terms of cost-of-illness and health-related quality of life. BMC Public Health. 2022;22(1):46.
  7. Roubenoff R. Sarcopenic obesity: the confluence of two epidemics. Obes Res. 2004;12(6):887-8. https://doi.org/10.1038/oby.2004.107
  8. Zhang XM, Xie XH, Dou QL, et al. Association of sarcopenic obesity with the risk of all-cause mortality among adults over a broad range of different settings: a updated meta-analysis. BMC Geriatr. 2019;19(1):1-14. https://doi.org/10.1186/s12877-018-1019-5
  9. Prado CM, Siervo M, Mire E, et al. A population-based approach to define body-composition phenotypes. Am J Clin Nutr. 2014;99(6):1369-77. https://doi.org/10.3945/ajcn.113.078576
  10. Bouchard DR, Dionne IJ, Brochu M. Sarcopenic/obesity and physical capacity in older men and women: data from the Nutrition as a Determinant of Successful Aging (NuAge)-the quebec longitudinal study. Obesity (Silver Spring). 2009;17(11):2082-8. https://doi.org/10.1038/oby.2009.109
  11. Dufour AB, Hannan MT, Murabito JM, et al. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham Study. J Gerontol A Biol Sci Med Sci. 2013;68(2):168-74. https://doi.org/10.1093/gerona/gls109
  12. Bouchard DR, Dionne IJ, Brochu M. Sarcopenic/Obesity and Physical Capacity in Older Men and Women: Data From the Nutrition as a Determinant of Successful Aging (NuAge)-the Quebec Longitudinal Study. Obesity. 2009;17(11):2082-8. https://doi.org/10.1038/oby.2009.109
  13. Petroni ML, Caletti MT, Dalle Grave R, et al. Prevention and treatment of sarcopenic obesity in women. Nutrients. 2019;11(6):1302.
  14. Rossi AP, Rubele S, Calugi S, et al. Weight cycling as a risk factor for low muscle mass and strength in a population of males and females with obesity. Obesity. 2019;27(7):1068-75. https://doi.org/10.1002/oby.22493
  15. Choi S, Chon J, Lee SA, et al. Central obesity is associated with lower prevalence of sarcopenia in older women, but not in men: a cross-sectional study. BMC Geriatr. 2022;22(1):1-9. https://doi.org/10.1186/s12877-021-02658-0
  16. Reijnierse EM, de van der Schueren MAE, Trappenburg MC, et al. Lack of knowledge and availability of diagnostic equipment could hinder the diagnosis of sarcopenia and its management. PLoS One. 2017;12(10):e0185837.
  17. Mehiret G, Molla A, Tesfaw A. Knowledge on risk factors and practice of early detection methods of breast cancer among graduating students of Debre Tabor University, Northcentral Ethiopia. BMC Womens Health. 2022;22(1):183.
  18. Hwang J, Park S. Sex differences of sarcopenia in an elderly asian population: the prevalence and risk factors. Int J Environ Res Public Health. 2022;19(19): 11980.
  19. Hwang J, Park S. Gender-specific risk factors and prevalence for sarcopenia among community-dwelling young-old adults. Int J Environ Res Public Health. 2022;19(12):7232.
  20. Hwang J. Coexistence of age-related loss of skeletal muscle mass and obesity in Korean men in their thirties: understanding incidence rate and key influencing elements. J Korean Soc Phys Med. 2023;18(4):37-45. https://doi.org/10.13066/kspm.2023.18.4.37
  21. Hwang J. Analyzing proportion and susceptibility markers of sarcopenia in Korean younger female. J Korean Soc Phys Med. 2023;18(4):19-27.
  22. Hwang J. Unraveling the contributing factors of sarcopenia in young Korean male adults: a study of occurrence, somatometric, biochemical, and behavioral characteristics. J Korean Soc Phys Med. 2023;18(3): 21-30. https://doi.org/10.13066/kspm.2023.18.3.21
  23. Hwang J. Comprehensive investigation on the prevalence and risk factors of coexistence of age-related loss of skeletal muscle mass and obesity among males in their 40s. J Korean Soc Phys Med. 2023;18(3):1-9. https://doi.org/10.13066/kspm.2023.18.3.1
  24. Hwang J. Age-related loss of skeletal muscle and associated risk factors in middle-aged men: a comprehensive study. J Korean Soc Phys Med. 2023;18(2):13-21.
  25. Hwang J. Prevalence, anthropometric risk factors, and clinical risk factors in sarcopenic women in their 40s. J Korean Soc Phys Med. 2023;18(2):23-31. https://doi.org/10.3346/jkms.2003.18.1.23
  26. Hwang J, Moon IY. Exploring incidence and potential risk factors of sarcopenic obesity among middle-aged women residing in a community. J Korean Soc Phys Med. 2023;18(3):11-9. https://doi.org/10.13066/kspm.2023.18.3.11
  27. Hwang J, Park S. A Korean nationwide cross-sectional study investigating risk factors, prevalence, and characteristics of sarcopenia in men in early old age. Healthcare. MDPI. 2023. pp.2860.
  28. Hwang J, Park S. Gender-specific prevalence and risk factors of sarcopenic obesity in the korean elderly population: a nationwide cross-sectional study. Int J Environ Res Public Health. 2023;20(2):1140.
  29. Lexell J, Downham D, Sjostrom M. Distribution of different fibre types in human skeletal muscles. Fibre type arrangement in m. vastus lateralis from three groups of healthy men between 15 and 83 years. J Neurol Sci. 1986;72(2-3):211-22. https://doi.org/10.1016/0022-510X(86)90009-2
  30. Kehayias JJ, Fiatarone MA, Zhuang H, et al. Total body potassium and body fat: relevance to aging. Am J Clin Nutr. 1997;66(4):904-10.
  31. Janssen I, Heymsfield SB, Wang ZM, et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985). 2000;89(1):81-8. https://doi.org/10.1152/jappl.2000.89.1.81
  32. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889-96. https://doi.org/10.1046/j.1532-5415.2002.50216.x
  33. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://doi.org/10.1093/ageing/afy169
  34. National Health and Nutrition Examination Survey 2017-March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes. In: National Center for Health S, National Health Statistics Reports. Hyattsville, MD. http://dx.doi.org/10.15620/cdc:106273. 2021.
  35. Hwang J, Kim N-h. Comprehensive cross-sectional study of sarcopenia in young Korean women: assessing body dimensions, clinical indicators, and behavioral traits for hazardous components and proportional analysis. J Korean Soc Phys Med. 2023.
  36. Hwang J, Lee J. Factors influencing age-related loss of skeletal muscle mass in young Korean men. J Korean Soc Phys Med. 2023;18(4):67-75. https://doi.org/10.13066/kspm.2023.18.4.67
  37. Pinheiro PA, da Silva Coqueiro R, Carneiro JAO, et al. Anthropometric indicators as screening tools for sarcopenia in older adult women. Enfermeria Clinica (English Edition). 2020;30(4):269-74. https://doi.org/10.1016/j.enfcle.2018.12.012
  38. Crosignani S, Sedini C, Calvani R, et al. Sarcopenia in primary care: screening, diagnosis, management. The Journal of Frailty & Aging. 2021;10:226-32.
  39. Tay L, Ding Y, Leung B, et al. Sex-specific differences in risk factors for sarcopenia amongst community-dwelling older adults. Age. 2015;37:1-12. https://doi.org/10.1007/s11357-014-9739-8
  40. Du Y, Oh C, No J. Associations between sarcopenia and metabolic risk factors: a systematic review and meta-analysis. J Obes Metab Syndr. 2018;27(3):175.
  41. Steffl M, Bohannon RW, Petr M, et al. Alcohol consumption as a risk factor for sarcopenia-a metaanalysis. BMC Geriatr. 2016;16:1-7. https://doi.org/10.1186/s12877-015-0167-0
  42. Prokopidis K, Witard OC. Understanding the role of smoking and chronic excess alcohol consumption on reduced caloric intake and the development of sarcopenia. Nutr Res Rev. 2022;35(2):197-206. https://doi.org/10.1017/S0954422421000135
  43. Jain S. Radiation in medical practice & health effects of radiation: rationale, risks, and rewards. Journal of Family Medicine and Primary Care. 2021;10(4):1520.
  44. Nowell J, Murray RS, Oetgen ME, et al. Decreasing radiation exposure in the treatment of pediatric long bone fractures using a DXA scan: a proof of concept. Journal of the Pediatric Orthopaedic Society of North America. 2023;5(3).
  45. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69(5):547-58. https://doi.org/10.1093/gerona/glu010
  46. Lu CW, Yang KC, Chang HH, et al. Sarcopenic obesity is closely associated with metabolic syndrome. Obes Res Clin Pract. 2013;7(4):e301-7. https://doi.org/10.1016/j.orcp.2012.02.003
  47. Perna S, Peroni G, Faliva MA, et al. Sarcopenia and sarcopenic obesity in comparison: prevalence, metabolic profile, and key differences. A cross-sectional study in Italian hospitalized elderly. Aging Clin Exp Res. 2017;29(6):1249-58. https://doi.org/10.1007/s40520-016-0701-8
  48. Du Y, Wang X, Xie H, et al. Sex differences in the prevalence and adverse outcomes of sarcopenia and sarcopenic obesity in community dwelling elderly in East China using the AWGS criteria. BMC Endocr Disord. 2019;19(1):109.
  49. Hulett NA, Scalzo RL, Reusch JEB. Glucose uptake by skeletal muscle within the contexts of type 2 diabetes and exercise: an integrated approach. Nutrients. 2022;14(3).
  50. Lim S, Kim JH, Yoon JW, et al. Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care. 2010;33(7):1652-4. https://doi.org/10.2337/dc10-0107
  51. Habib SS, Alkahtani S, Alhussain M, et al. Sarcopenia coexisting with high adiposity exacerbates insulin resistance and dyslipidemia in Saudi adult men. Diabetes Metab Syndr Obes. 2020:3089-97.
  52. Yin T, Zhang J-X, Wang F-X, et al. The association between sarcopenic obesity and hypertension, diabetes, and abnormal lipid metabolism in Chinese adults. Diabetes Metab Syndr Obes. 2021:1963-73.
  53. Schrager MA, Metter EJ, Simonsick E, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol. 2007;102(3):919-25. https://doi.org/10.1152/japplphysiol.00627.2006
  54. Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018;44:38-50. https://doi.org/10.1016/j.cytogfr.2018.10.002
  55. Daskalopoulou C, Wu YT, Pan W, et al. Factors related with sarcopenia and sarcopenic obesity among low- and middle-income settings: the 10/66 DRG study. Sci Rep. 2020;10(1):20453.
  56. Pang BWJ, Wee SL, Lau LK, et al. Prevalence and associated factors of sarcopenia in singaporean adults-the yishun study. J Am Med Dir Assoc. 2021;22(4):885 e1-e10.
  57. Cui YF, Huang C, Momma H, et al. The longitudinal association between alcohol consumption and muscle strength: a population-based prospective study. J Musculoskeletal Neur Inter. 2019;19(3):294-9.
  58. Jyothi MS, Reddy KR, Soontarapa K, et al. Membranes for dehydration of alcohols via pervaporation. J Environ Manage. 2019;242:415-29.