• Title/Summary/Keyword: Mass changes

Search Result 2,181, Processing Time 0.028 seconds

Physiochemical analysis, toxicity test and anti-bacterial effect of practically detoxified sulfur (법제유황의 실용적 제조에 따른 물리 화학적 분석 및 독성, 항균 작용에 관한 연구)

  • In, Dong-Chul;Yu, Do-Hyeon;Park, Chul;Park, Jin-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.3
    • /
    • pp.197-205
    • /
    • 2012
  • Despite of a long history of the sulfur on the disease healing effect, there were limited ways of applying sulfur to animal and human. We have developed the detoxified sulfur (non toxic sulfur) method to make it practical and mass production possible through laboring for many years. This study practiced scanning electron microscope (SEM), Energy dispersive X-ray spectrometer (EDS) and secondary ion mass spectrometry (SIMS) analysis to investigate the physicochemical aspect of detoxified sulfur. We also performed the oral toxicity experiment to mice, and anti-bacterial test of the detoxified sulfur. Based on the SEM, EDS and SIMS results, the united particles in the mass form with the similar component intensity with the raw sulfur were observed, and hydrogen sulfide ion (HS-) component which is regarded as a toxic matter, was decreased after detoxification. Indeed, toxicity test on the mice (10 males, 10 females) showed no clinical, histopathological changes with the 5 times amount (2,500 mg/kg) of the actual doses. However, the male-mice showed decreased in body weight by 23.6%, 24.3% in the 7th, 14th day, respectively, after detoxified sulfur. Moreover, the female-mice administered the detoxified sulfur showed decreased in body weight by 28.7% (P<0.05) than that in the control group on the 14th day. The result of antibacterial test on the detoxified sulfur showed antibacterial effect (27%) to inhibit the growth of Staphylococcus aureus. It is shown that detoxified sulfur can be used as feed additive and has an affect on the farm perfomance.

The Effect of Epoxy Resin on the Properties of Encapsulated Fire Extinguishing Agent (캡슐화된 소화약제의 물성에 대한 고분자 매트릭스의 효과)

  • Alexandra, Sertsova;Sergei, Krasilnikov;Lee, Sang-Sup;Kim, Jong-Sang.
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.19-27
    • /
    • 2019
  • Fire extinguishing composite materials based on low-viscosity epoxy resin (EP) and containing 50 wt% of encapsulated fire extinguishing agent (EFA) have been studied. The positive effect of the EP on the kinetics and temperature of the EFA decapsulation was established. The EP increases the decapsulation temperature of the EFA from 130 ℃ to 155 ℃ and changes the kinetics of the decapsulation. The epoxy matrix increases the thermal stability of the EFA more than 3.9 times compared to that of the pure EFA. The protective effect of the EP on the storage stability of the EFA was validated. The mass loss of EP-containing EFA at 60 ℃ and 80% humidity over 96 h is 0.4%. The mass loss of pure EFA under the same conditions is 15%. A similar effect was observed under ultraviolet radiation: the EP-containing EFA loses 0.8% at pure EFA mass of 6%. The testing of alternative polymer matrixes has been considered.

Accumulation characteristics and correlation analysis of five ginsenosides with different cultivation ages from different regions

  • Xiao, Dan;Yue, Hao;Xiu, Yang;Sun, Xiuli;Wang, YiBo;Liu, ShuYing
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.338-344
    • /
    • 2015
  • Background: Ginseng (the roots of Panax ginseng Meyer) is a well-known traditional Oriental medicine and is now widely used as a health food. It contains several types of ginsenosides, which are considered the major active medicinal components of ginseng. It has recently been reported that the qualitative and quantitative properties of ginsenosides found in ginseng may differ, depending on cultivation regions, ages, species, and so on. Therefore, it is necessary to study these variations with respect to cultivation ages and regions. Methods: In this study, 3-6-yr-old roots of P. ginseng were collected from three different cultivation regions. The contents of five ginsenosides (Rb1, Rd, Rc, Re, and Rgl) were measured by rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry. The Kruskal-Wallis Rank sum test and multiple t test were used for comparative analysis of the data to evaluate the dynamic changes in the accumulation of these ginsenosides affected by cultivation regions and ages. Results: The content and composition of ginsenosides varied significantly among specimens collected from different cultivation regions and having different cultivation ages. For all samples, the content of Rg1 and Re ginsenosides increases with age and this rate of increase is different for each sample. The contents of Rb1, Rc, and Rd varied with cultivation ages in samples from different cultivation regions; especially, Rb1 from a 6-yr-old root showed approximately twofold variation among the samples from three cultivation regions. Furthermore, the content of Rb1 highly correlated with that of Rd (r = 0.89 across all locations and ages). Conclusion: In our study, only the contents of ginsenosides Rg1 and Re were affected by the root age. Ginsenosides Rb1, Rc, and Rd varied widely with ages in samples from different cultivation regions.

An Analytical Study on System Identification of Steel Beam Structure for Buildings based on Modified Genetic Algorithm (변형 유전 알고리즘을 이용한 건물 철골 보 구조물의 시스템 식별에 관한 해석적 연구)

  • Oh, Byung-Kwan;Choi, Se-Woon;Kim, Yousok;Cho, Tong-Jun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.231-238
    • /
    • 2014
  • In the buildings, the systems of structures are influenced by the gravity load changes due to room alteration or construction stage. This paper proposes a system identification method establishing mass as well as stiffness to parameters in model updating process considering mass change in the buildings. In this proposed method, modified genetic algorithm, which is optimization technique, is applied to search those parameters while minimizing the difference of dynamic characteristics between measurement and FE model. To search more global solution, the proposed modified genetic algorithm searches in the wider search space. It is verified that the proposed method identifies the system of structure appropriately through the analytical study on a steel beam structure in the building. The comparison for performance of modified genetic algorithm and existing simple genetic algorithm is carried out. Furthermore, the existing model updating method neglecting mass change is performed to compare with the proposed method.

Classification of the Somatotype for Pre-School Children's Clothing Construction (幼兒服 構成을 위한 體型 分類)

  • 박찬미;서미아
    • The Research Journal of the Costume Culture
    • /
    • v.6 no.3
    • /
    • pp.201-216
    • /
    • 1998
  • This study is aimed at exploring a reasonable and reliable method of measuring pre-school children's somatotypes and there by, data basing the information obtained and classifying their somatotypes, at providing useful data which can be utilized for the design of their dress forms and enhancing the fitness of their apparels. to this end, 330 pre-school children living in the capital area and aged fro m4 to 6 were sampled to be subject to the measurement of their somatotypes. The results of this study can be summarized as follows; 1. As the pre-school children grow, the scales indicating their vertical growth including height could well be measured differently, but those scales indicating their lateral somatotypes which reflect their postural changes did not show among age groups. in other words, male kids were higher in the scales including height than female kids, while there were not differences between sexes in most scales indicating their lateral somatotypes. 2. The elements comprising the somatotypes were the size of body skeleton, the thickness of body mass, the posture and shape of body mass, the lateral under-neck shape, the extrusion of belly, the length between front and the back shoulder, the shape of lower belly, the shape of upper hip, the shape of lower hip and the slope of shoulders. Among them, the first two elements accounted for 64.8% of the total distribution, which means that these two elements explain the body-mass somatotypes of kid's most effectively. 3. The sample kids were divided into two types for classification of their somatotypes. As a result, it was found that the elements determining their somatotypes most influentially are, unlike adults' case the size of body skeleton rather than posture or lateral body shape. The type I showed less dimensions in most scales than type II, while their shoulder were les developed,. The type I was found distributed much in 4-year-old female kids. The type II showing more development in each element was found distributed much in 6-year-old male kids.

  • PDF

Comparison of Pregnant Women's Mechanical Energy between the Period of Pregnancy and Postpartum (임신 기간 및 출산 후의 임산부 보행의 역학적 에너지 변화)

  • Hah, Chong-Ku;Yi, Jae-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.387-393
    • /
    • 2010
  • The purpose of this study was to compare pregnant women's gait parameters and mechanical energies caused by changes in hormone levels and anatomical features such as body mass, body-mass distribution, joint laxity, and musculo-tendinous strength from pregnancy to postpartum. Ten subjects (height: $161{\pm}6.5cm$, mass: $62.7{\pm}10.4\;kg$, $66.4{\pm}9.3\;kg$, $68.4{\pm}7.7\;kg$, $57.2{\pm}7.7\;kg$) participated in the four times experiments (the first, middle, last term and after birth) and walked ten trials at a self-selected pace without shoes. The gait motions were captured with Qualisys system and gait parameters were calculated with Visual-3D. Pregnant women's gait velocities were decreased during the pregnancy periods, but increased after birth. Stride width and cycle time were increased during pregnancy, but decreased after birth. Thigh energy (77.4%) was greater than shank energy (19.06%) or feet (3.54%) about total energy of the lower limbs. Their feet (Left R2=0.881, Right R2=0.852) and shank (Left R2=0.318, Right R2=0.226) energies were significantly increased (positive correlation), but double limb stance time (DLST, R2=0.679) and body total energy (R2=0.138) were decreased (negative correlation) for their velocities. These differences suggest that thigh segment may be a dominant segment among lower limbs, and have something to do with gait velocities. Further studies should investigate joint power and joint work to find energy dissipation or absorption from pregnancy period to postpartum.

Development of Thermal-Hydraulic-Mechanical Coupled Numerical Analysis Code for Complex Behavior in Jointed Rock Mass Based on Fracture Mechanics (균열 암반의 복합거동해석을 위한 열-수리-역학적으로 연계된 파괴역학 수치해석코드 개발)

  • Kim, Hyung-Mok;Park, Eui-Seob;Shen, Baotang;Synn, Joong-Ho;Kim, Taek-Kon;Lee, Seong-Cheol;Ko, Tae-Young;Lee, Hee-Suk;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.66-81
    • /
    • 2011
  • In this study, it was aimed to develop a thermal-hydraulic-mechanical coupled fracture mechanics code that models a fracture initiation, propagation and failure of underground rock mass due to thermal and hydraulic loadings. The development was based on a 2D FRACOD (Shen & Stephasson, 1993), and newly developed T-M and H-M coupled analysis modules were implemented into it. T-M coupling in FRACOD employed a fictitious heat source and time-marching method, and explicit iteration method was used in H-M coupling. The validity of developed coupled modules was verified by the comparison with the analytical result, and its applicability to the fracture initiation and propagation behavior due to temperature changes and hydraulic fracturing was confirmed by test simulations.

Gintonin-enriched fraction protects against sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy in high-fat diet-fed mice

  • Jin, Heegu;Oh, Hyun-Ji;Nah, Seung-Yeol;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.454-463
    • /
    • 2022
  • Background: Gintonin-enriched fraction (GEF), a non-saponin fraction of ginseng, is a novel glycolipoprotein rich in hydrophobic amino acids. GEF has recently been shown to regulate lipid metabolism and browning in adipocytes; however, the mechanisms underlying its effects on energy metabolism and whether it affects sarcopenic obesity are unclear. We aimed to evaluate the effects of GEF on skeletal muscle atrophy in high-fat diet (HFD)-induced obese mice. Methods: To examine the effect of GEF on sarcopenic obesity, 4-week-old male ICR mice were used. The mice were divided into four groups: chow diet (CD), HFD, HFD supplemented with 50 mg/kg/day GEF, or 150 mg/kg/day GEF for 6 weeks. We analyzed body mass gain and grip strength, histological staining, western blot analysis, and immunofluorescence to quantify changes in sarcopenic obesity-related factors. Results: GEF inhibited body mass gain while HFD-fed mice gained 22.7 ± 2.0 g, whereas GEF-treated mice gained 14.3 ± 1.2 g for GEF50 and 11.8 ± 1.6 g for GEF150 by downregulating adipogenesis and inducing lipolysis and browning in white adipose tissue (WAT). GEF also enhanced mitochondrial biogenesis threefold in skeletal muscle. Furthermore, GEF-treated skeletal muscle exhibited decreased expression of muscle-specific atrophic genes, and promoted myogenic differentiation and increased muscle mass and strength in a dose-dependent manner (p < 0.05). Conclusion: These findings indicate that GEF may have potential uses in preventing sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy.

Shifting Meme Content during Information Development on the COVID-19 Pandemic in Indonesia

  • Kadri, Kadri;Jumrah, Jumrah
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.1
    • /
    • pp.30-44
    • /
    • 2022
  • This research aims to identify and reveal the meaning of memes about COVID-19, and explain changes in meme content in regard to the information development of COVID-19 in Indonesia published by the mass media and online media. The data is sourced from memes that are shared on social media, especially WhatsApp groups in the period of January to June 2020. To reveal the meaning of memes, a semiotic analysis of Roland Barthes' model is used. Qualitative analysis is used to reveal the relationship between memes and the information development of COVID-19 in Indonesia. The results of the study show that meme content has shifted according to three stages of information development of COVID-19 in Indonesia published by the mass media and online media. When COVID-19 was not yet confirmed in Indonesia, meme content contained mostly humor that was not educative, moreover it seemed to underestimate the coronavirus. Meme content which is mostly humorous and pornographic occurred when COVID-19 was confirmed in Indonesia and during the lockdown policy. At last, as the government has begun to distribute social assistance, the meme content looks more critical. The results of this research emphasize the urgency of the mass media as a source of public information during the COVID-19 pandemic, become a reference for the community in making memes as a forum for expressing feelings and social criticism, and serve as a reference for the government to act and make the right decisions related to the pandemic that is endemic in their country.

Effect of the new photoatomic data library EPDL2017 to mass attenuation coefficient calculation of materials used in the nuclear medicine facilities using EpiXS software

  • Jecong, J.F.M.;Hila, F.C.;Balderas, C.V.;Guillermo, N.R.D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3440-3447
    • /
    • 2022
  • The accuracy of the photoatomic cross-section data is of great importance in the field of radiation protection, particularly in the characterization of radiation shielding materials. With the release of the latest and probably the most accurate photoatomic data library, EPDL2017, the need to re-evaluate all the existing and already established mass attenuation coefficients (MACs) of all radiation shielding materials arises. The MACs of several polymers, alloy-based, glasses, and building materials used in a nuclear medicine facility were investigated using the EPDL2017 library embedded in EpiXS software and were compared to MACs available in the literature. The relative differences between MACEpiXS and MACXCOM were negligible, ranging from 0.02% to 0.36% for most materials. However, for material like a glass comprising of elements Te and La evaluated near their corresponding K-edge energies, the relative differences in MACs increased up to 1.46%. On the other hand, a comparison with MACs calculated based on EPDL97 (a predecessor of EPDL2017) revealed as much as a 6.61% difference. Also, it would seem that the changes in MACs were more evident in the materials composed of high atomic number elements evaluated at x-ray energies compared to materials composed of low atomic number elements evaluated at gamma-ray energies.