• Title/Summary/Keyword: Mass Spectrometry (MS)

검색결과 1,902건 처리시간 0.022초

효모 탐색을 위한 Pyrolysis Mass Spectrometry의 활용 (Application of Pyrolysis Mass Spectrometry on Yeast Screening)

  • 신기선;신용국;권오유;이상한
    • 생명과학회지
    • /
    • 제11권1호
    • /
    • pp.19-23
    • /
    • 2001
  • To develop the effective microbial screening method, pyrolysis mass spectrometry (PyMS) fingerprinting was evaluated as a tool that discriminate various yeast strains. The target yeast strains were isolated from industrial wastewater. Seventeen environmental isolated yeast strains were examined by pyrolysis mass spectrometry and sequencing analysis of the large subunit rRNA gene D1/D2 region. The PyMS results were compared with those of sequencing analysis. Taxonomic correlations were observed between the PyMS data and the sequencing results. It was concluded that PyMS provides a rapid, reliable and cost-reducing method for discrimination of the yeast strains.

  • PDF

General Fragmentations of Alkaloids in Electrospray Ionization Tandem Mass Spectrometry

  • Shim, Hee Jung;Lee, Ji Ye;Kim, Byungjoo;Hong, Jongki
    • Mass Spectrometry Letters
    • /
    • 제4권4호
    • /
    • pp.79-82
    • /
    • 2013
  • Various types of alkaloids observed in several herbal medicines were analyzed by electrospray ionization tandem mass spectrometry in positive ion mode. In the present study, MS/MS spectralpatterns were investigated for eight-types of alkaloids (aporpine, protoberberine, tetrahydroprotoberberine, benzylisoquinoline, protopine, phthalide, morpine, and bisbenzylisoquinoline). For aporpine- and protoberberine-type alkaloids, main fragmentations occurred at substituted groups on rigid ring structures, not showing ring fusion. Interesting fragmentations due to iminolization and retro-Diels-Alder (RDA) reaction were observed in MS/MS spectra of protopine- and tetrahydroprotobereberine-type alkaloids. Also, several types of fragmentations such as inductive cleavage and ${\alpha}$-cleavage, or bond cleavage between two ring structures were observed depending on their structural characteristics. These fragmentation patterns are expected to allow instant classification of the specific alkaloid type in various MS/MS spectra of alkaloids.

Basics of Ion Mobility Mass Spectrometry

  • Lee, Jong Wha
    • Mass Spectrometry Letters
    • /
    • 제8권4호
    • /
    • pp.79-89
    • /
    • 2017
  • Ion mobility mass spectrometry (IM-MS) combines the advantages of ion mobility spectrometry (IMS) and MS for effective gas-phase ion analysis. Separation of ions based on their mobilities prior to MS can be performed without a great loss in other analytical figures of merit, and the extra dimension of analysis offered by IM can be beneficial for isomer and complex sample analyses. In this review, basic principles of IMS and IM-MS are described in addition to an introduction to various IMS techniques and commercial IM-MS instruments. The nature of collision cross-section (${\Omega}_D$), an important parameter determining the transport properties of ions in IMS, is also explained in detail.

Unusual Applications of Kendrick Plots: Recalibration and Tolerance

  • Thierry N. J. Fouquet;Orlando Cabarcos
    • Mass Spectrometry Letters
    • /
    • 제14권4호
    • /
    • pp.173-177
    • /
    • 2023
  • Kendrick plots offer an alternative visualization of mass spectral data which reveals ion series and patterning by turning a mass spectrum into a map, plotting the fractional mass (wrongly called mass defect) as a function of mass-to-charge ratios and ion abundances. Although routinely used for polymer mass spectrometry, two unreported applications of these Kendrick plots are proposed using the program "kendo2": the graphical recalibration of a mass spectrum via the simulation of a theoretical fractional mass and a multi-segment fit; and the rapid evaluation of scan-to-scan variation of accurate mass measurements used as tolerances for the blank subtraction of UPLC-MS data files. Both applications are compatible with any type of high-resolution MS data including LC/GC-MS(/MS).

Ambient Mass Spectrometry in Imaging and Profiling of Single Cells: An Overview

  • Bharath Sampath Kumar
    • Mass Spectrometry Letters
    • /
    • 제14권4호
    • /
    • pp.121-140
    • /
    • 2023
  • It is becoming more and more clear that each cell, even those of the same type, has a unique identity. This sophistication and the diversity of cell types in tissue are what are pushing the necessity for spatially distributed omics at the single-cell (SC) level. Single-cell chemical assessment, which also provides considerable insight into biological, clinical, pharmacodynamic, pathological, and toxicity studies, is crucial to the investigation of cellular omics (genomics, metabolomics, etc.). Mass spectrometry (MS) as a tool to image and profile single cells and subcellular organelles facilitates novel technical expertise for biochemical and biomedical research, such as assessing the intracellular distribution of drugs and the biochemical diversity of cellular populations. It has been illustrated that ambient mass spectrometry (AMS) is a valuable tool for the rapid, straightforward, and simple analysis of cellular and sub-cellular constituents and metabolites in their native state. This short review examines the advances in ambient mass spectrometry (AMS) and ambient mass spectrometry imaging (AMSI) on single-cell analysis that have been authored in recent years. The discussion also touches on typical single-cell AMS assessments and implementations.

Identification of Novel Metabolic Proteins Released by Insulin Signaling of the Rat Hypothalmus Using Liquid Chromatography-Mass Spectrometry (LC-MS)

  • Chin, Chur
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권6호
    • /
    • pp.470-474
    • /
    • 2007
  • Objective : The brain is dependent on glucose as an energy source. Intricate homeostatic mechanisms have been implicated in maintaining the blood glucose concentration in the brain. The aim of this study is to find the way to identify the metabolic proteins regulating the glucose in rat hypothalamus. Methods : In this study, we analysed the secretome from rat hypothalamus in vivo. We introduced 500 nM of insulin into the rat hypothalamus. The chromatographic patterns of the secretome were identified, after which Mass Spectrometry-Mass Spectrometry (MS-MS) analysis was performed. Results : In Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, 60 proteins were identified in the secretome. Among them, 8 novel proteins were unveiled and were associated with the energy metabolism of insulin signaling in mitochondria of rat hypothalamic neuron. Nineteen other proteins have unknown functions. These ligands were confirmed to be secreting from the rat hypothalmus on insulin signaling by western blotting. Conclusion : The hypothalamus is the master endocrine gland responsible for the regulation of various physiological and metabolic processes. Proteomics using LC-MS analysis offer a efficient means for generating a comprehensive analysis of hypothalamic protein expression by insulin signaling.

Change of MS Method and Comparison of SIFT-MS Method

  • CHOI, Jong-Sun;KWON, Lee-Seung;LEE, Ji-Hoon;KIM, Romertta;KWON, Woo-Taeg
    • 웰빙융합연구
    • /
    • 제5권1호
    • /
    • pp.37-46
    • /
    • 2022
  • Purpose: This study examines the history of the evolution of MS analysis and intends to consider the future direction of technological development through the difference from the latest technology, SIFT-MS. Research design, data and methodology: A method of analysis will be described in detail at the below by SIFT-MS (Selected Ion Flow Mass Spectrometry), which is a technology developed by a company called SIFT Technologies. Results: The initial concept of mass spectrometry was begun in the late 1890s, and it continues to evolve even after the 21st century through the ripening stage of the 20th century. The development process of mass spectrometry by year has been described in detail in the Main text. Conclusions: Mass spectrometry, qualitative and quantitative analysis of substances plays a very important role in the research and medical fields. The development of these analytical methods is expected to continue in the future, and faster and more accurate qualitative analysis and mass spectrometry will be developed than the level currently reached. In addition, it is expected that hardware and software will be configured so that non-analysis experts can handle it easily, and it will be used as a technology that is more closely related to our lives.

Comparison Study of Sensitivity Factors of Elements in Glow Discharge- & Inductively Coupled Plasma- Mass Spectrometry

  • Kim, Young-Sang;Plotnikov, M.;Hoffmann, Volker
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1991-1995
    • /
    • 2005
  • Sensitivity factors of elements by a glow discharge mass spectrometry (GD-MS) were intensively investigated and compared with a laser ablation inductively coupled plasma-mass spectrometry (ICP-MS). In case of copper matrix, the sensitivity factor by GD-MS generally decreases with the increase of the mass number of element. The details are a little different between each data measured by Faraday and multiplier detectors. The factor by a multiplier detector drastically decreases with the mass increase in the region of low mass as in Faraday detector’s case, but slowly in the high mass region. On the contrast, the sensitivity factor of solution standard by a conventional ICP-MS slowly increases with the increase of elemental mass number even though there are some exceptions such as gold and also the sensitivity factor by a laser ablation ICP MS generally increases with mass number of element in the specimen of glass type. In case of steel matrix, any definite trends could not be shown in the relationship between the GD-MS’s sensitivity factor and elemental mass.

Gold Nanostructure-Based Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Analysis of Small Biomolecules

  • Hye-Sun Cho;Tae Hoon Seo;Ji Hun Park;Young-Kwan Kim
    • Mass Spectrometry Letters
    • /
    • 제15권1호
    • /
    • pp.26-39
    • /
    • 2024
  • Gold nanostructures (Au NSs) are useful and interesting matrices for mass spectrometric analysis of various biomolecules based on organic matrix-free laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS). Au NSs provide high efficiency and versatility in LDI-TOF-MS analysis based on their well-established synthesis and surface functionalization, large surface area, high laser absorption capacity, and photothermal conversion efficiency. Therefore, Au NSs based LDI-TOF-MS can be a facile, functional, and efficient analytical method for important small biomolecules owing to its simple preparation, rapid analysis, salt-tolerance, signal reproducibility, and quantitative analysis. This review chronologically summarizes the important advance of Au NSs-based LDI-TOF-MS platforms in terms of in-depth mechanism, signal enhancement, quantitative analysis, and disease diagnosis.

Mass Spectrometric Analysis for Discrimination of Diastereoisomers

  • Manshoor, Nurhuda;Weber, Jean-Fré
    • Mass Spectrometry Letters
    • /
    • 제6권4호
    • /
    • pp.99-104
    • /
    • 2015
  • A liquid chromatography mass spectrometry (LC-MS) system was used to identify and distinguish oligostilbene diastereoisomers. A polyphenolic extract from Neobalanocarpus heimii known to be rich in oligostilbenes of various degrees of condensation was used as test material. Fourteen oligostilbenes were isolated from this extract on a fully automated semi-preparative HPLC system. Out of these, two pairs of dimers, one pair of trimers, two pairs of tetramers and a group of four tetramers with similar skeleton were identified as diastereoisomers. Their structures and configurations were established by spectroscopic methods. All isolated compounds were subjected to an LC-MS/MS to study their fragmentation patterns. The experiments were performed on a liquid chromatography-mass spectrometry (LC-MS) with electrospray-ionization (ESI) interface in positive mode. MS/MS spectra of each pure compound were recorded by direct infusion in identical conditions and their product ion spectra were analysed. Some subtle yet significant differences were observed between the spectra of oligostilbenes from the various diastereoisomeric series.