• Title/Summary/Keyword: Mass Energy

Search Result 3,868, Processing Time 0.037 seconds

Numerical Simulation of Hydrogen Storage System using Magnesium Hydride Enhanced in its Heat Transfer (열전달 특성이 향상된 마그네슘 수소화물을 이용한 수소저장시스템의 전산모사)

  • KIM, SANG GON;SHIM, JAE HYEOK;IM, YEON HO
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.469-476
    • /
    • 2015
  • The purpose of this work is to investigate main factors to design a solid-state hydrogen stroage system with magnesium hydride with 10 wt% graphite using numerical simulation tools. The heat transfer characteristic of this material was measured in order to perform the highly reliable simulation for this system. Based on the measured effective thermal conductivity, a transient heat and mass transfer simulation revealed that the total performance of hydrogen storage system is prone to depend on heat and mass transfer behaviors of hydrogen storage medium instead of its inherent kinetic rate for hydrogen adsorption. Furthermore, we demonstrate that the thermodynamic aspect between equlibrium presssure and temperature is one of key factor to design the hydrogen storage system with high performance using magnesium hydride.

Statistical Properties of Flare Variability, Energy, and Frequency in Low-Mass Stars

  • Chang, Seo-Won;Byun, Yong-Ik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.29.2-29.2
    • /
    • 2011
  • Although stellar flares have a long history of observations, there are few concrete understanding about underlying physical processes and meaningful correlations with other stellar properties. Most of previous observations dealt with only a small number of sample stars, and therefore not sufficient to support generalized statistical studies. Based on one-month long MMT time-series observations of the open cluster M37, we monitored light variations of nearly 2,500 M-dwarf stars and successfully identified 606 flare events from 422 stars. This is a rare attempt to estimate true flare rates and properties among many stars of the same age and mass group. For each flare, we considered both observational and physical parameters including flare shape, duration before and after the peak, baseline magnitude before and after the peak, peak magnitudes, total energy and peak energy, etc. We find significant correlations between some of key parameters over a wide range of energy ($Er=10^{32}{\sim}10^{36}ergs$). For instance, regardless of stellar luminosities, the energy power spectrum of flares can be approximated by a power law (${\beta}=0.83-0.97$). This suggests that flares follow similar physical mechanisms for atmospheric heating and cooling among these low-mass stars. From this MMT data set, we derived an average flaring rate of $0.019 hr^{-1}$ among flare stars and $0.003 hr^{-1}$ for all M-dwarf candidates. We will report the details of our analysis and discuss physical implications.

  • PDF

Maternal Changes of Body Composition and Energy Balance in Korean Lactating Women (한국인 수유부의 체조성 변화 및 에너지 평형)

  • 임현숙
    • Journal of Nutrition and Health
    • /
    • v.29 no.8
    • /
    • pp.899-907
    • /
    • 1996
  • This study was conducted to examine how Korean women mange energy metabolism during lactation. Eighteen women recruited were healthy, had normal pregnancies and were required to breast-feed their babies exclusively for at least 12wks. During the study period, all subjects were visited and interviewed five times : 3d, 9d, 4wk, 8wk, and 12wk lactation. Body composition variables were analyzed by a bioelectrical impedance method, energy intakes were assessed by using the inventory-weighing method, energy expenditure were determined by recording daily activities, and milk energy output was investigated from the amount of milk production and the gross energy content of milk. The subjects consumed less energy than current recommended allowance all over the study period, but compatible with fairly adequate lactational performance. They responded the additional energy stress of lactation by enhancing metabolic efficiency, increasing energy intakes, reduction physical activities and mobilizing body reserves. Another finding in this study was that the reduction in body fat-free mass may be the one way that women meet the energy demands of lactation like the reduction in body fat mass. The results from this study suggest that current recommended additional energy need during lactation, 2.09MJ/d(500kcal/d), is too high for healthy Korean women. Our data also indicate that the changes of body composition and energy balance at earlier postpartum are extremely different from those at later periods.

  • PDF

Analysis of Reduction Strategies for Air Pollutants Discharged from Emission Sources and their Impact on the Seoul Metropolitan Area

  • Lee, Woo-Keun;SunWoo, Young
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • The Korean government enacted the "Special Law for Improving Air Quality of Metropolitan Area" in 2003. According to this plan, Korean government plan to lower the concentrations of $PM_{10}$ and $NO_x$ to $40{\mu}g/m^3$ and 22 ppb, respectively, by 2014. In this study, we analyze emission reduction strategies to lower their concentration. Emission reduction for the supply of mass energy and regenerative energy are compared with several scenarios. According to the results, 713 t/y of $NO_x$ and 165 t/y of $PM_{10}$ will be reduced by enhancing the number of households supplied by local heating and air conditioning. And also 5 t/y of $PM_{10}$ and 312 t/y of $NO_x$ will be reduced by replacing conventional energy with solar energy by 2014.

Sloshing Analysis in Rectangular Tank with Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석)

  • Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.

Experimental Study on Mass Transfer Rate at the Packed Column of Solar Cooling Liquid Desiccant System Using Counter Flow Configuration

  • Hengki R, R.;Choi, K.H.;Yohana, Eflita;Sukmaji, I.C.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.155-161
    • /
    • 2009
  • Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling the latent load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed column and the heat transfer and mass transfer will occur. This proposal is try study the mass transfer and heat transfer inside the packed column of dehumidifier and regenerator systems. And later on, the rates of dehumidification and regeneration that were affected by desiccant flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems.

  • PDF

APPLICATIONS OF ELECTROPLATING METHOD FOR HEAT TRANSFER STUDIES USING ANALOGY CONCEPT

  • Ko, Sang-Hyuk;Moon, Deok-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.251-258
    • /
    • 2006
  • This study presents an idea of using analogy concept to the heat transfer studies regarding the HTGR development. Theoretical backgrounds regarding the idea were reviewed. In order to investigate the predictability of a mass transfer system for heat transfer system phenomenology, an electroplating system coupled with a limiting current technique was adopted. Test facilities for laminar forced convection and natural convections under laminar and turbulent conditions were constructed, for which heat transfer correlations are known. The test results showed a close agreement between mass transfer and heat transfer systems, which is an encouraging indication of the validity of the analogy theory and the experimental methodology adopted. This paper shows the potential of the experimental method that validates the little-understood heat transfer phenomena, even in complex geometries such as HTGR.

A Study on the Performance of EFI Engine Used Ultrasonic Energy Adding Fuel system(II) -Attaching Importance to the Fuel Spray- (초음파연료공급창치를 이용한 EFI기관의 성능에 관한 연구(II) -연료 분사를 중심으로-)

  • 윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.80-86
    • /
    • 1997
  • This experiment was undertaken to investigate spray characteristics of the conventional injection system and the ultrasonic energy added injection system. Sauter mean diameter was measured under the variation of injection pressure and the spray distance. To measure the droplet size, we used the Malvern system 2600C. The spray angle and mass distribution were analyzed to the CCD camera and the patternater. After experiment, it was found that the ultrasonic energy added injection system had smaller Sauter mean diameter of droplet, wider mass distribution and wider spray angle than the conventional injection system had.

  • PDF

An Experimental Study on the Mass and Energy Release for a Hot Leg Break LBLOCA During Post Blowdown

  • S.J. Hong;Kim, J.H.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.108-127
    • /
    • 2000
  • Hot leg break LBLOCA(Large Break LOCA) had a potential to be a containment maximum pressure accident in YGN3&4, which was induced from excessive conservatism in the CE analysis methodology of mass and energy release. This study conducted mass and energy release experiment for the hot leg break LBLOCA during post blowdown with an integral test facility, SNUF(Seoul National University Facility). This facility simulated YGN 3&4 with volume ratio of 1/1140 based on Ishii's three level scaling. Experiment showed that SI(Safety Injection) water refilled cold leg first and core later. SI water was vaporized in the core, which resulted in the repressurization of reactor. This increase of pressure drove the water in cold leg to flow up half height of U tubes. However, since the water was drained back soon, the release through the SG side broken section by evaporation was negligibly small. This study also provided experimental assessment of RELAP5 results by KAERI for the release through the SG side broken section.

  • PDF

Lift Enhancement and Drag Reduction on an Airfoil at Low Reynolds Number using Blowing and Distributed Suction

  • Chao, Song;Xudong, Yang
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • An active flow control technique using blowing and distributed suction on low Reynolds airfoil is investigated. Simultaneous blowing and distributed suction can recirculate the jet flow mass, and reduce the penalty to propulsion system due to avoiding dumping the jet mass flow. Energy is injected into main flow by blowing on the suction surface, and the low energy boundary flow mass is removed by distributed suction, thus the flow separation can be successfully suppressed. Aerodynamic lift to drag ratio is improved significantly using the flow control technique, and the energy consumption is quite low.