• 제목/요약/키워드: Martensitic stainless steels

검색결과 32건 처리시간 0.017초

스테인레스강의 가스질화 후 내식특성에 미치는 열처리조건의 영향 (Effects of Heat Treatment on Corrosion Resistance Properties of Gas Nitrided Stainless Steels)

  • 김한군;김용현
    • 열처리공학회지
    • /
    • 제22권5호
    • /
    • pp.298-306
    • /
    • 2009
  • Gas nitriding and post oxidation were performed on stainless steels and SACM 645 steel. With increasing gas nitriding time, the increasing rate of nitrided layer was most rapid on SACM 645 steel and the nitriding depth of nitrided layer was most narrow on STS 304 steel among three steels. Corrosion resistance was increased with post oxidation on stainless steels and with increasing time the effect of corrosion resistance was decreased to compare with relatively short gas nitriding time. An improvement effect of corrosion resistance was consisted of predominantly on austenitic stainless steel by post oxidation after gas nitriding among three steels and it was relatively less influenced on martensitic stainless steel.

Study on Proton Radiation Resistance of 410 Martensitic Stainless Steels under 3 MeV Proton Irradiation

  • Lee, Jae-Woong;Surabhi, S.;Yoon, Soon-Gil;Ryu, Ho Jin;Park, Byong-Guk;Cho, Yeon-Ho;Jang, Yong-Tae;Jeong, Jong-Ryul
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.183-186
    • /
    • 2016
  • In this study, we report on an investigation of proton radiation resistance of 410 martensitic stainless steels under 3 MeV proton with the doses ranging from $1.0{\times}10^{15}$ to $1.0{\times}10^{17}p/cm^2$ at the temperature 623 K. Vibrating sample magnetometer (VSM) and X-ray diffractometer (XRD) were used to study the variation of magnetic properties and structural damages by virtue of proton irradiation, respectively. VSM and XRD analysis revealed that the 410 martensitic stainless steels showed proton radiation resistance up to $10^{17}p/cm^2$. Proton energy degradation and flux attenuations in 410 stainless steels as a function of penetration depth were calculated by using Stopping and Range of Ions in Matter (SRIM) code. It suggested that the 410 stainless steels have the radiation resistance up to $5.2{\times}10^{-3}$ dpa which corresponds to neutron irradiation of $3.5{\times}10^{18}n/cm^2$. These results could be used to predict the maintenance period of SUS410 stainless steels in fission power plants.

INVESTIGATIONS ON VARIABLE WELD PENETRATIONS IN GTA WELDING OF AUSTENITIC AND MARTENSITIC STAINLESS STEELS

  • Puybouffat, Sylvain;Chabenat, Alain;Boudot, Cecile;Marya, Surendar
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.752-756
    • /
    • 2002
  • Variable weld bead penetrations related to the base metal chemistry of stainless steels in GTA welding have been under constant investigations due to their industrial implications. It has been proposed that among other elements, the sulfur content of steels determines the weld pool geometry, particularly its penetration. It is suggested that the surface tension temperature gradient of steels becomes positive with appropriate dosing in sulfur and results in inward melt flow, propitious for deeper welds. However, the chemistry of industrial steels is complex due to the presence of multiple minor elements either deliberately added or remnant impurity traces. With this in view, investigations on 41 austenitic and nine martensitic stainless steels were carried to see if there existed any possible relation between the weld profile and some of the designated elements. The results suggest no direct correlation between sulfur or any other major or trace element and weld penetration. At first glance the results are contradictory to what is often asserted.

  • PDF

하이드라진으로 환원시킨 그래핀을 코팅한 오스테나이트와 마르텐사이트 스테인리스 강 고체고분자형 연료전지 금속 분리판의 전기화학적 특성 평가 (Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods)

  • 차성윤;이재봉
    • Corrosion Science and Technology
    • /
    • 제15권2호
    • /
    • pp.92-107
    • /
    • 2016
  • Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.

스테인리스강의 기계적 성질에 미치는 예비처리 후 가스질화조건의 영향 (Effect of Gas Nitriding Characteristics on the Mechanical Properties after Pre-Heat Treatment of Stainless Steels)

  • 김용현;김한군
    • 열처리공학회지
    • /
    • 제23권3호
    • /
    • pp.142-149
    • /
    • 2010
  • Austenitic stainless steel is more or less difficult with conventional gas nitriding treatment, but it can be nitrided after appropriate pre-heat treatment. The pretreatment was more effective upon nitriding for austenitic stainless steel than martensitic stainless steel. Both thickness and microhardness measurements indicated that effect of the nitriding treatment was more sensitive in austenitic stainless steel than martensitic stainless steel with nitriding time. Fatigue strength was most increased with SACM 645 steel among three steels.

Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

  • Ghosh, Rahul;Krishna, S. Chenna;Venugopal, A.;Narayanan, P. Ramesh;Jha, Abhay K.;Ramkumar, P.;Venkitakrishnan, P.V.
    • Corrosion Science and Technology
    • /
    • 제15권6호
    • /
    • pp.281-289
    • /
    • 2016
  • The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a $Cr_2N$ phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.

Effect of the Heat Treatment Parameters on the Phase Transformation and Corrosion Resistance of Fe-14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee Yong;Park, Yong Soo
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.56-61
    • /
    • 2007
  • Carbide dissolution during heating processes can change chemical composition of martensitic stainless steel in its austenitic phase. Although the austenitizing treatments were carried out at a homogeneous austenite region, the amount of carbon atom in the matrix differs. Increase in the amount of carbon contents in the matrix resulted in decreasing MS temperature, which consequently causes the volume fraction of the retained austenite to increase. This study reveals the effects of the austenitizing treatment on the properties of Fe - 0.3C - 14Cr - 3Mo martensitic stainless steel change with different austenitizing temperatures.

강자성(强磁性) 스테인리스강(鋼) 자화침(磁化鍼)의 개발 (Development of Magnetized Ferromagnetic Stainless Steel Acupuncture Needle)

  • 홍도현
    • Journal of Acupuncture Research
    • /
    • 제31권2호
    • /
    • pp.21-30
    • /
    • 2014
  • Objectives : Manufacturing and manipulation techniques of acupuncture can be interpreted as an induced electromagnetic viewpoint, as proposed in previous study. Considering from this point of view, the magnetization of needles should be essential to enhance the electromagnetic effects during the behavior of the acupuncture needling. Methods : The current disposable needles are made of non-magnetic stainless steels, so ferromagnetic materials were searched as suitable substitutes. Meanwhile, at the practical view, stainless steels are very available for the several superior properties like as corrosion resistance, strength, etc., magnetic stainless steels were first investigated. Some types of them still preserved the ferromagnetic properties of iron, so trial needles were made with them. And then magnetization of them were followed. Results : Among the hundreds types of stainless steels, martensitic or ferritic ones are ferromagnetic. The needles made with these ferromagnetic wires were magnetized, and polarized by magnetizer, and their magnetic properties were improved. Moreover, in addition to the superiority of the magnetism, the electrical and thermal conductivities of them were even better than those of the current austenitic stainless steels. Conclusions : Through the developmental study based on the electromagnetic viewpoint, the magnetized and polarized acupuncture needles were completed. This means that these needles having improved magnetism can be used to improve the electromagnetic needling effects, and moreover, their superiorities in the electrical and thermal conductivities can also give another benefits in treatments of electrical or warm needling.

오스테나이트 스테인리스강의 극저온 특성 (An Extremely Low Temperature Properties of Austenite Stainless Steels)

  • 정찬회;김순국;이준희;정세진;김익수
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.37-42
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen and deformation-induced martensitic transformation on the behavior of austenite stainless steels used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing of immersion time in the liquid nitrogen, the tensile strength of all austenite stainless steels at cryogenic temperature was increased because the martensite transformation of unstable austenite. The restraint of crack generation ana transmission also increased the tensile strength by the active ${\alpha}'$ transformation. The elongation decreasing of 321 steel is not the mechanical deformation of austenite phase but the stress induced martensite phase during the tensile test.

Stress Corrosion Cracking Behavior of Cold Worked 316L Stainless Steel in Chloride Environment

  • Pak, Sung Joon;Ju, Heongkyu
    • 한국주조공학회지
    • /
    • 제40권5호
    • /
    • pp.129-133
    • /
    • 2020
  • The outcomes of solution annealing and stress corrosion cracking in cold-worked 316L austenitic stainless steel have been studied using x-ray diffraction (XRD) and the slow strain rate test (SSRT) technique. The good compatibility with a high-temperature water environment allows 316L austenitic stainless steel to be widely adopted as an internal structural material in light water reactors. However, stress corrosion cracking (SCC) has recently been highlighted in the stainless steels used in commercial pressurized water reactor (PWR) plants. In this paper, SCC and inter granular cracking (IGC) are discussed on the basis of solution annealing in a chloride environment. It was found that the martensitic contents of cold-worked 316L stainless steel decreased as the solution annealing time was increased at a high temperature. Moreover, mode of SCC was closely related to use of a chloride environment. The results here provide evidence of the vital role of a chloride environment during the SCC of cold-worked 316L.