• 제목/요약/키워드: Martensite

검색결과 646건 처리시간 0.023초

페라이트-마르텐사이트 複合組織鋼의 衝擊破壞擧動 (Study on the impact fracture behavior with the ferrite-martensite dual phase steels)

  • 송삼홍;오택렬
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.19-27
    • /
    • 1988
  • 본 연구에서는 화학성분, 마르텐사이트 체적율, 연결도, 모상위경 및 제2상의 형태를 되도록 일정하게 하고, 제1상과 제2상의 경도비만을 변화시켰을 때의 충격降伏荷重 및 충격최대하중의 거동, 충격속도가 하중작용시간에 미치는 영향, 흡수에너지 및 延性-胞性거동 등을 고찰하였다.

Fe-Ni 합금 나노 분말의 마르텐사이트 변태에 관한 연구 (A Study on Martensite Transformation of Fe-Ni Alloy Nanoparticles)

  • 유연태
    • 한국재료학회지
    • /
    • 제13권8호
    • /
    • pp.491-496
    • /
    • 2003
  • Fe-Ni alloy nanoparticles were prepared by ERC (Evaporation and Rapid Condensation) method, and the crystal structure and the behavior of martensite for the nanosized alloy particles were investigated by X-ray diffraction analysis. The relation between the rate of martensite transformation and the internal strain of austenite was discussed. The lattice spaces of austenite and martensite for the nanoparticles agreed with those of the bulk materials. The rate of martensite transformation from austenite and the internal strain of austenite was reduced with decreasing the average size of Fe-Ni nanoparticles. It was thought that the residual austenite in the Ni content range of 11∼l5at% was caused by the internal strain, and the residual martensite in the Ni content range of 32∼36at% had its origin in the high surface energy of nanoparticles.

고 Mn 오스테나이트계 스테인리스강의 기계적성질에 미치는 가공유기 마르텐사이트 변태의 영향 (Effect of Deformation Induced Martensite Transformation on the Mechanical Properties in Austenitic Stainless Steel with High Mn)

  • 허태영;한현성;이상희;강창룡
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.51-56
    • /
    • 2012
  • The effect of deformation induced martensite transformation on the mechanical properties in austenitic stainless steel with high Mn was studied. ${\alpha}$'-martensite was formed by deformation in austenitic stainless steel with high Mn. Deformation induced ${\alpha}$'-martensite was formed with surface relief by cold rolling. With the increase of deformation degree, volume fraction of deformation induced martensite was increased rapidly in early stage of deformation and then, increased slowly. With the increase of deformation degree, hardness and tensile strength were rapidly increased with linear relations, while elongation was rapidly decreased and then slowly decreased. Hardness, tensile strengths and elongation were influenced strongly by deformation induced martensite.

가공열처리한 Fe-30%Ni-0.35%C합금의 역변태거동 (Reverse Transformation Behavior in Thermomechanically Processed Fe-30%Ni-0.35%C Alloy)

  • 안행근;유정희;김학신
    • 열처리공학회지
    • /
    • 제12권4호
    • /
    • pp.313-319
    • /
    • 1999
  • The reverse transformation behavior was investigated by DSC analysis in thermomechanically processed Fe-30%Ni-0.35%C alloy. Upon increasing the heating rate from $5^{\circ}C/min$ to $80^{\circ}C/min$, the As point of the ausformed martensite was not changed and the As point of the marformed martensite decreased at reverse transformation. The Af points showed to be constant with increasing the heating rate both in the ausformed martensite and in the marformed martensite. With increasing the deformation degree, the As points of the ausformed martensite and the marformed martensite increased and the Af points appeared to be constant, structures. The enthalpy changes increased with increasing the heating rate, but decreased with increasing the deformation degree in both structures.

  • PDF

Cu를 갖는 오스템퍼드 구상흑연주철의 기계적 성질에 미치는 마르텐사이트의 영향 (Effect of Martensite on the Mechanical Properties of Austempered Ductile Cast Iron with Cu)

  • 강창룡;이종문;손동욱;권성겸;김익수;성장현
    • 열처리공학회지
    • /
    • 제15권6호
    • /
    • pp.255-259
    • /
    • 2002
  • Effect of martensite on the mechanical properties of austempered ductile cast iron was investigated after obtained the martensite by subzero treatment. Retained austenite was transformed to martensite by subzero treatment, and with decreasing subzero treatment temperature, volume fraction of martensite was increased. With increasing of the volume fraction of martensite, tensile strength was increased and elongation was decreased, ratio of increasing of strength and decreasing of elongation was higher in case of specimens with lot's of Cu contents. With increasing of the volume fraction of martensite, hardness slowly increased until only about 5% and it rapidly increased in a straight proportion when it is above 5%, while impact value was rapidly decreased until about 7% but it had a little change when it is above 7%.

Fe-26Mn-4Co-2Al 제진합금의 인장강도에 미치는 냉간가공의 영향 (Effect of Cold Working on the Tensile Strength of Fe-26Mn-4Co-2Al Damping Alloy)

  • 강창룡;김성휘;정규성
    • 동력기계공학회지
    • /
    • 제20권6호
    • /
    • pp.46-50
    • /
    • 2016
  • This study was carried out to investigate the effect of cold working on the tensile strength of Fe-26Mn-4Co-2Al damping alloy. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite were formed by cold working, and martensite was formed with the specific direction and surface relief. With the increasing degree of cold rolling, volume fraction of ${\alpha}^{\prime}$-martensite was increased, whereas the volume fraction of ${\varepsilon}$-martensite was decreased after rising to maximum value at specific lever of cold rolling. Tensile strength was linearly increased with an increasing of degree of cold rolling. Tensile strength was strongly affected to the volume fraction of ${\varepsilon}$-martensite formed by cold working, but the effect of volume fraction of ${\varepsilon}$-martensite on the tensile strength was not observed.

Fe-26Mn-2Al 합금의 진동 감쇠능에 미치는 결정립 크기의 영향 (The Effect of grain size on the damping capacity of Fe-26Mn-2Al alloy)

  • 강창룡;엄정호;김효종;성장현
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.115-120
    • /
    • 2007
  • The effect of grain size on the damping capacity of Fe-26Mn-2Al alloy studied in this paper has been investigated after changing the microstructure by cold rolling and changing grain size. Micro structures in Fe-26Mn-2Al at room temperature consist of a large quantity of austenite and a small quantity of ${\varepsilon}\;and\;{\alpha}'$ martensite. And ${\varepsilon}\;and\;{\alpha}'$ martensite was increased by increasing the degree of cold rolling. The content of deformation induced martensite was increased with increasing the degree of cold rolling. Damping capacity was linearly increased with increasing ${\varepsilon}$ martensite content, which suggests that stacking faults and ${\varepsilon}$ martensite variant boundaries are the principle damping sources. With increasing the grain size in Fe-26Mn-2Al alloy, the damping capacity was increased due to increasing the volume fraction of ${\varepsilon}$ martensite by decrement in stability of austenite phase. With decreasing the grain size, the content of deformation induced martensite was decreased and the damping capacity was decreased.

  • PDF

Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향 (Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy)

  • 한현성;강창룡
    • 열처리공학회지
    • /
    • 제32권2호
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.

Fe와 V이 Zr-0.8Sn 합금의 $\beta{\rightarrow}\alpha$ 상변태 특성에 미치는 영향 (The Effects of Fe and V on the Characteristics of $\beta$to$\alpha$ Transformation for Zr-0.8Sn Alloys)

  • 오영민;김선진
    • 한국재료학회지
    • /
    • 제10권9호
    • /
    • pp.636-641
    • /
    • 2000
  • Zr-0.86Sn 합금이 $\beta{\rightarrow}\alpha$상변태 특성에 미치는 Fe와 V의 영향을 광학현미경과 투과전자현미경으로 연구하였다. 공냉의 경우에는 V의 첨가량이 증가함에 다라 $\beta{\rightarrow}\alpha+\beta$변태온도가 감소하여 미세한 $\alpha$-lath들의 폭을 더욱 감소시켰으나, Fe의 경우에는 첨가량이 증가함에 다라 오히려 $\alpha$-lath의 폭이 약간 증가하였다. 수냉의 경우에는 모든 합금에서 martensite 미세구조를 보였다. 수냉한 Zr-0.8Sn, Zr-0.8Sn-0.1Fe, Zr-0.8Sn-0.2Fe, Zr-0.8Sn-0.4Fe, Zr-0.8Sn-0.1V 그리고 Zr-0.8Sn-0.2V 합금에서는 주로 slipped martensite 미세구조가 형성된 반면에 수냉한 Zr-0.8Sn-0.4V 합금에서는 twinned martensite 미세구조가 관찰하였다. 수냉한 Zr-0.8Sn 합금에서 V의 첨가향이 증가함에 따라 slipped martensite에서 twinned martensite 미세구조로의 천이는 M(sub)s 온도의 감소에 기인한 것으로 생각된다.

  • PDF

Al 첨가 TWIP강에서의 지연파괴에 대한 변형유기 마르텐사이트 변태의 영향 (Effects of the Strain Induced Martensite Transformation on the Delayed Fracture for Al-added TWIP Steel)

  • 김영우;강남현;박영도;최일동;김교성;김성규;조경목
    • 대한금속재료학회지
    • /
    • 제46권12호
    • /
    • pp.780-787
    • /
    • 2008
  • For the advanced high strength steels (AHSS), high-manganese TWIP (twinning induced plasticity) steels exhibit high tensile strength (800-1000 MPa) and high elongation (50-60%). However, the TWIP steels need to be understood of delayed fracture following the cup drawing test. Among the factors to cause delayed fracture, i.e, martensite transformation, hydrogen embrittlement and residual stress, the effects of martensite transformation (${\gamma}{\rightarrow}{\varepsilon}$ or ${\gamma}{\rightarrow}{\alpha}^{\prime}$) were investigated on the delayed fracture phenomenon. Microstructural phase analysis was conducted for cold rolled (20, 60, 80% reduction ratio) steels and tensile deformed (20, 40, 60% strain) steels. For the Al-added TWIP steels, no martensite phase was found in the cold rolled and tensile deformed specimen. But, the TWIP steels with no Al addition indicated the martensite transformation. The cup drawing specimens showed the martensite transformation irrespective of the Al-addition to the TWIP steel. However, the TWIP steel with no Al exhibited the larger amount of martensite than the case of the TWIP steel with Al addition. For the reason, it was possible to conclude that the Al addition suppressed the martensite transformation in TWIP steels, therefore preventing the delayed fracture effectively. However, it was interesting to note that the mechanism of delayed fracture should be incorporated with hydrogen embrittlement and/or residual stress as well as the martensite transformation.