• Title/Summary/Keyword: Marquardt algorithm

Search Result 110, Processing Time 0.029 seconds

An Effective Method for Dimensionality Reduction in High-Dimensional Space (고차원 공간에서 효과적인 차원 축소 기법)

  • Jeong Seung-Do;Kim Sang-Wook;Choi Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.88-102
    • /
    • 2006
  • In multimedia information retrieval, multimedia data are represented as vectors in high dimensional space. To search these vectors effectively, a variety of indexing methods have been proposed. However, the performance of these indexing methods degrades dramatically with increasing dimensionality, which is known as the dimensionality curse. To resolve the dimensionality curse, dimensionality reduction methods have been proposed. They map feature vectors in high dimensional space into the ones in low dimensional space before indexing the data. This paper proposes a method for dimensionality reduction based on a function approximating the Euclidean distance, which makes use of the norm and angle components of a vector. First, we identify the causes of the errors in angle estimation for approximating the Euclidean distance, and discuss basic directions to reduce those errors. Then, we propose a novel method for dimensionality reduction that composes a set of subvectors from a feature vector and maintains only the norm and the estimated angle for every subvector. The selection of a good reference vector is important for accurate estimation of the angle component. We present criteria for being a good reference vector, and propose a method that chooses a good reference vector by using Levenberg-Marquardt algorithm. Also, we define a novel distance function, and formally prove that the distance function lower-bounds the Euclidean distance. This implies that our approach does not incur any false dismissals in reducing the dimensionality effectively. Finally, we verify the superiority of the proposed method via performance evaluation with extensive experiments.

RPC Model Generation from the Physical Sensor Model (영상의 물리적 센서모델을 이용한 RPC 모델 추출)

  • Kim, Hye-Jin;Kim, Jae-Bin;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.4 s.27
    • /
    • pp.21-27
    • /
    • 2003
  • The rational polynomial coefficients(RPC) model is a generalized sensor model that is used as an alternative for the physical sensor model for IKONOS-2 and QuickBird. As the number of sensors increases along with greater complexity, and as the need for standard sensor model has become important, the applicability of the RPC model is also increasing. The RPC model can be substituted for all sensor models, such as the projective camera the linear pushbroom sensor and the SAR This paper is aimed at generating a RPC model from the physical sensor model of the KOMPSAT-1(Korean Multi-Purpose Satellite) and aerial photography. The KOMPSAT-1 collects $510{\sim}730nm$ panchromatic images with a ground sample distance (GSD) of 6.6m and a swath width of 17 km by pushbroom scanning. We generated the RPC from a physical sensor model of KOMPSAT-1 and aerial photography. The iterative least square solution based on Levenberg-Marquardt algorithm is used to estimate the RPC. In addition, data normalization and regularization are applied to improve the accuracy and minimize noise. And the accuracy of the test was evaluated based on the 2-D image coordinates. From this test, we were able to find that the RPC model is suitable for both KOMPSAT-1 and aerial photography.

  • PDF

Prediction of Failure Time of Tunnel Applying the Curve Fitting Techniques (곡선적합기법을 이용한 터널의 파괴시간 예측)

  • Yoon, Yong-Kyun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • The materials failure relation $\ddot{\Omega}=A{(\dot{\Omega})}^\alpha$ where $\Omega$ is a measurable quantity such as displacement and the dot superscript is the time derivative, may be used to analyze the accelerating creep of materials. Coefficients, A and $\alpha$, are determined by fitting given data sets. In this study, it is tried to predict the failure time of tunnel using the materials failure relation. Four fitting techniques of applying the materials failure relation are attempted to forecast a failure time. Log velocity versus log acceleration technique, log time versus log velocity technique, inverse velocity technique are based on the linear least squares fits and non-linear least squares technique utilizes the Levenberg-Marquardt algorithm. Since the log velocity versus log acceleration technique utilizes a logarithmic representation of the materials failure relation, it indicates the suitability of the materials failure relation applied to predict a failure time of tunnel. A linear correlation between log velocity and log acceleration appears satisfactory(R=0.84) and this represents that the materials failure relation is a suitable model for predicting a failure time of tunnel. Through comparing the real failure time of tunnel with the predicted failure times from four curve fittings, it is shown that the log time versus log velocity technique results in the best prediction.

Petrophysical Joint Inversion of Seismic and Electromagnetic Data (탄성파 탐사자료와 전자탐사자료를 이용한 저류층 물성 동시복합역산)

  • Yu, Jeongmin;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Seismic inversion is a high-resolution tool to delineate the subsurface structures which may contain oil or gas. On the other hand, marine controlled-source electromagnetic (mCSEM) inversion can be a direct tool to indicate hydrocarbon. Thus, the joint inversion using both EM and seismic data together not only reduces the uncertainties but also takes advantage of both data simultaneously. In this paper, we have developed a simultaneous joint inversion approach for the direct estimation of reservoir petrophysical parameters, by linking electromagnetic and seismic data through rock physics model. A cross-gradient constraint is used to enhance the resolution of the inversion image and the maximum likelihood principle is applied to the relative weighting factor which controls the balance between two disparate data. By applying the developed algorithm to the synthetic model simulating the simplified gas field, we could confirm that the high-resolution images of petrophysical parameters can be obtained. However, from the other test using the synthetic model simulating an anticline reservoir, we noticed that the joint inversion produced different images depending on the model constraint used. Therefore, we modified the algorithm which has different model weighting matrix depending on the type of model parameters. Smoothness constraint and Marquardt-Levenberg constraint were applied to the water-saturation and porosity, respectively. When the improved algorithm is applied to the anticline model again, reliable porosity and water-saturation of reservoir were obtained. The inversion results indicate that the developed joint inversion algorithm can be contributed to the calculation of the accurate oil and gas reserves directly.

An Artificial Neural Networks Model for Predicting Permeability Properties of Nano Silica-Rice Husk Ash Ternary Blended Concrete

  • Najigivi, Alireza;Khaloo, Alireza;zad, Azam Iraji;Rashid, Suraya Abdul
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.225-238
    • /
    • 2013
  • In this study, a two-layer feed-forward neural network was constructed and applied to determine a mapping associating mix design and testing factors of cement-nano silica (NS)-rice husk ash ternary blended concrete samples with their performance in conductance to the water absorption properties. To generate data for the neural network model (NNM), a total of 174 field cores from 58 different mixes at three ages were tested in the laboratory for each of percentage, velocity and coefficient of water absorption and mix volumetric properties. The significant factors (six items) that affect the permeability properties of ternary blended concrete were identified by experimental studies which were: (1) percentage of cement; (2) content of rice husk ash; (3) percentage of 15 nm of $SiO_2$ particles; (4) content of NS particles with average size of 80 nm; (5) effect of curing medium and (6) curing time. The mentioned significant factors were then used to define the domain of a neural network which was trained based on the Levenberg-Marquardt back propagation algorithm using Matlab software. Excellent agreement was observed between simulation and laboratory data. It is believed that the novel developed NNM with three outputs will be a useful tool in the study of the permeability properties of ternary blended concrete and its maintenance.

Development of a Fatigue Damage Model of Wideband Process using an Artificial Neural Network (인공 신경망을 이용한 광대역 과정의 피로 손상 모델 개발)

  • Kim, Hosoung;Ahn, In-Gyu;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.88-95
    • /
    • 2015
  • For the frequency-domain spectral fatigue analysis, the probability density function of stress range needs to be estimated based on the stress spectrum only, which is a frequency domain representation of the response. The probability distribution of the stress range of the narrow-band spectrum is known to follow the Rayleigh distribution, however the PDF of wide-band spectrum is difficult to define with clarity due to the complicated fluctuation pattern of spectrum. In this paper, efforts have been made to figure out the links between the probability density function of stress range to the structural response of wide-band Gaussian random process. An artificial neural network scheme, known as one of the most powerful system identification methods, was used to identify the multivariate functional relationship between the idealized wide-band spectrums and resulting probability density functions. To achieve this, the spectrums were idealized as a superposition of two triangles with arbitrary location, height and width, targeting to comprise wide-band spectrum, and the probability density functions were represented by the linear combination of equally spaced Gaussian basis functions. To train the network under supervision, varieties of different wide-band spectrums were assumed and the converged probability density function of the stress range was derived using the rainflow counting method and all these data sets were fed into the three layer perceptron model. This nonlinear least square problem was solved using Levenberg-Marquardt algorithm with regularization term included. It was proven that the network trained using the given data set could reproduce the probability density function of arbitrary wide-band spectrum of two triangles with great success.

Localization Estimation Using Artificial Intelligence Technique in Wireless Sensor Networks (WSN기반의 인공지능기술을 이용한 위치 추정기술)

  • Kumar, Shiu;Jeon, Seong Min;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.820-827
    • /
    • 2014
  • One of the basic problems in Wireless Sensor Networks (WSNs) is the localization of the sensor nodes based on the known location of numerous anchor nodes. WSNs generally consist of a large number of sensor nodes and recording the location of each sensor nodes becomes a difficult task. On the other hand, based on the application environment, the nodes may be subject to mobility and their location changes with time. Therefore, a scheme that will autonomously estimate or calculate the position of the sensor nodes is desirable. This paper presents an intelligent localization scheme, which is an artificial neural network (ANN) based localization scheme used to estimate the position of the unknown nodes. In the proposed method, three anchors nodes are used. The mobile or deployed sensor nodes request a beacon from the anchor nodes and utilizes the received signal strength indicator (RSSI) of the beacons received. The RSSI values vary depending on the distance between the mobile and the anchor nodes. The three RSSI values are used as the input to the ANN in order to estimate the location of the sensor nodes. A feed-forward artificial neural network with back propagation method for training has been employed. An average Euclidian distance error of 0.70 m has been achieved using a ANN having 3 inputs, two hidden layers, and two outputs (x and y coordinates of the position).

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.

Nonlinear creep model based on shear creep test of granite

  • Hu, Bin;Wei, Er-Jian;Li, Jing;Zhu, Xin;Tian, Kun-Yun;Cui, Kai
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.527-535
    • /
    • 2021
  • The creep characteristics of rock is of great significance for the study of long-term stability of engineering, so it is necessary to carry out indoor creep test and creep model of rock. First of all, in different water-bearing state and different positive pressure conditions, the granite is graded loaded to conduct indoor shear creep test. Through the test, the shear creep characteristics of granite are obtained. According to the test results, the stress-strain isochronous curve is obtained, and then the long-term strength of granite under different conditions is determined. Then, the fractional-order calculus software element is introduced, and it is connected in series with the spring element and the nonlinear viscoplastic body considering the creep acceleration start time to form a nonlinear viscoplastic creep model with fewer elements and fewer parameters. Finally, based on the shear creep test data of granite, using the nonlinear curve fitting of Origin software and Levenberg-Marquardt optimization algorithm, the parameter fitting and comparative analysis of the nonlinear creep model are carried out. The results show that the test data and the model curve have a high degree of fitting, which further explains the rationality and applicability of the established nonlinear visco-elastoplastic creep model. The research in this paper can provide certain reference significance and reference value for the study of nonlinear creep model of rock in the future.

Metabolic Changes in Patients with Parkinson's Disease after Stereotactic Neurosurgery by Follow-up 1H MR Spectroscopy

  • Choe, Bo-Young;Baik, Hyun-Man;Chun, Shin-Soo;Son, Byung-Chul;Kim, Moon-Chan;Kim, Bum-Soo;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.99-109
    • /
    • 2001
  • Authors investigated neuronal changes of local cellular metabolism in the cerebral lesions of Parkinsonian symptomatic side between before and after stereotactic neurosurgery by follow-up 1H magnetic resonance spectroscopy (MRS). Patients with Parkinson's disease (PD) (n = 15) and age-matched normal controls (n = 15) underwen MRS examinations using a stimulated echo acquisition mode (STEAM) pulse sequence that provided 2${\times}$2${\times}$2 ㎤ (8ml) volume of interest in the regions of substantia nigra, thalamus, and lentiform nucleus. Spectral parameters were 20 ms TE, 2000 ms TR, 128 averages,2500 Hz spectral width, and 2048 data points. Raw data were processed by the SAGE data analysis package (GE Medical Systems). Peak areas of N-acetylaspartate (NAA), creatine (Cr), choline-containing compounds (Cho), inositols (Ins), and the sum (Glx) of glutamate and GABA were calculated by means of fitting the spectrum to a summation of Lorentzian curves using Marquardt algorithm. After blindly processed, we evaluated neuronal alterations of observable metabolite ratios between before and after stereotactic neurosurgery using Pearson product-moment analysis (SPSS, Ver. 6.0). A significant reduction of NAA/Cho ratio was observed in the cerebral lesion in substantia nigra of PD patient related to the symptomatic side after neurosurgery (P : 0.03). In thalamus, NAA/Cho ratio was also significantly decreased in the cerebral lesion including the electrode-surgical region (P : 0.03). A significant reduction of NAA/Cho ratio in lentiform nucleus was not oberved, but tended toward significant reduction after neurosurgery (P = 0.08). In particular, remarkable lactate signal was noted from the surgical thalamic lesions of 6 among 8 patients and internal segments of globus pallidus of 6 among 7 patients, respectively. Significant metabolic alterations of NAA/Cho ratio might reflect functional changes of neuropathological processes in the lesion of substantia nigra, thalamus, and lentiform nucleus, and could be a valuable finding fur evaluation of Parkinson's disease after neurosurgery. Increase of lactate signals, being remarkable in surgical lesions, could be consistent with a common consequence of neurosurgical necrosis. Thus, IH MRS could be a useful modality to evaluate the diagnostic and prognostic implications fur Parkinsons disease after functional neurosurgery.

  • PDF