• Title/Summary/Keyword: Markov transition probability

Search Result 101, Processing Time 0.023 seconds

Assessing Misdiagnosis of Relapse in Patients with Gastric Cancer in Iran Cancer Institute Based on a Hidden Markov Multi-state Model

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4109-4115
    • /
    • 2014
  • Background: Accurate assessment of disease progression requires proper understanding of natural disease process which is often hidden and unobservable. For this purpose, disease status should be clearly detected. But in most diseases it is not possible to detect such status. This study, therefore, aims to present a model which both investigates the unobservable disease process and considers the error probability in diagnosis of disease states. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at the Iran Cancer Institute from 1995 to 1999 were analyzed. Moreover, to estimate and assess the effect of demographic, diagnostic and clinical factors as well as medical and post-surgical variables on transition rates and the probability of misdiagnosis of relapse, a hidden Markov multi-state model was employed. Results: Classification errors of patients in alive state without a relapse ($e_{21}$) and with a relapse ($e_{12}$) were 0.22 (95% CI: 0.04-0.63) and 0.02 (95% CI: 0.00-0.09), respectively. Only variables of age and number of renewed treatments affected misdiagnosis of relapse. In addition, patient age and distant metastasis were among factors affecting the occurrence of relapse (state1${\rightarrow}$state2) while the number of renewed treatments and the type and extent of surgery had a significant effect on death hazard without relapse (state2${\rightarrow}$state3)and death hazard with relapse (state2${\rightarrow}$state3). Conclusions: A hidden Markov multi-state model provides the possibility of estimating classification error between different states of disease. Moreover, based on this model, factors affecting the probability of this error can be identified and researchers can be helped with understanding the mechanisms of classification error.

Gender Difference in Self-Employment Rates In Korea (남녀간 자영업 비중의 격차 분석)

  • Kim, Woo-Yung
    • Journal of Labour Economics
    • /
    • v.24 no.2
    • /
    • pp.1-34
    • /
    • 2001
  • This study analyzes the male-female difference in self-employment rates in Korea using panel data constructed from the Economically Active Population Survey in 1999. Given that most studies on self-employment have focused on male self-employment and have not examined why self-employment rate is usually higher among males than females, this study certainly extends the existing literature on this subject This study consists of two parts. The first part deals with estimating self-employment rates for males and female within a Markov framework. The second part presents decomposition results of the male-female differential in self-employment rates. Major findings of the study are (1) self-employment rate is higher for males than females because entry into self-employment is larger but exit from self-employment is smaller for males than female, (2) higher entry probability for males is due to differences in coefficients of transition probability functions while lower exit probability for males is due to differences in characteristics, (3) a large part of male-female gap in self-employment rates results from differences in being a head of family, marital status and age between males and females.

  • PDF

Multiple Behavior s Learning and Prediction in Unknown Environment

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1820-1831
    • /
    • 2010
  • When interacting with unknown environments, an autonomous agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. The traditional multiple sequential learning model requires predefined probability of the states' transition. This paper proposes a multiple sequential learning and prediction system with definition of autonomous states to enhance the automatic performance of existing AI algorithms. In sequence learning process, the sensed states are classified into several group by a set of proposed motivation filters to reduce the learning computation. In prediction process, the learning agent makes a decision based on the estimation of each state's cost to get a high payoff from the given environment. The proposed learning and prediction algorithms heightens the automatic planning of the autonomous agent for interacting with the dynamic unknown environment. This model was tested in a virtual library.

Subsequent application of self-organizing map and hidden Markov models infer community states of stream benthic macroinvertebrates

  • Kim, Dong-Hwan;Nguyen, Tuyen Van;Heo, Muyoung;Chon, Tae-Soo
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.95-107
    • /
    • 2015
  • Because an ecological community consists of diverse species that vary nonlinearly with environmental variability, its dynamics are complex and difficult to analyze. To investigate temporal variations of benthic macroinvertebrate community, we used the community data that were collected at the sampling site in Baenae Stream near Busan, Korea, which is a clean stream with minimum pollution, from July 2006 to July 2013. First, we used a self-organizing map (SOM) to heuristically derive the states that characterizes the biotic condition of the benthic macroinvertebrate communities in forms of time series data. Next, we applied the hidden Markov model (HMM) to fine-tune the states objectively and to obtain the transition probabilities between the states and the emission probabilities that show the connection of the states with observable events such as the number of species, the diversity measured by Shannon entropy, and the biological water quality index (BMWP). While the number of species apparently addressed the state of the community, the diversity reflected the state changes after the HMM training along with seasonal variations in cyclic manners. The BMWP showed clear characterization of events that correspond to the different states based on the emission probabilities. The environmental factors such as temperature and precipitation also indicated the seasonal and cyclic changes according to the HMM. Though the usage of the HMM alone can guarantee the convergence of the training or the precision of the derived states based on field data in this study, the derivation of the states by the SOM that followed the fine-tuning by the HMM well elucidated the states of the community and could serve as an alternative reference system to reveal the ecological structures in stream communities.

Implementation of Markov Chain: Review and New Application (관리도에서 Markov연쇄의 적용: 복습 및 새로운 응용)

  • Park, Chang-Soon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.657-676
    • /
    • 2011
  • Properties of statistical process control procedures may not be derived analytically in many cases; however, the application of a Markov chain can solve such problems. This article shows how to derive the properties of the process control procedures using the generated Markov chains when the control statistic satisfies the Markov property. Markov chain approaches that appear in the literature (such as the statistical design and economic design of the control chart as well as the variable sampling rate design) are reviewed along with the introduction of research results for application to a new control procedure and reset chart. The joint application of a Markov chain approach and analytical solutions (when available) can guarantee the correct derivation of the properties. A Markov chain approach is recommended over simulation studies due to its precise derivation of properties and short calculation times.

Implementation of Markov chain: Review and new application (관리도에서 Markov연쇄의 적용: 복습 및 새로운 응용)

  • Park, Changsoon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.537-556
    • /
    • 2021
  • Properties of statistical process control procedures may not be derived analytically in many cases; however, the application of a Markov chain can solve such problems. This article shows how to derive the properties of the process control procedures using the generated Markov chains when the control statistic satisfies the Markov property. Markov chain approaches that appear in the literature (such as the statistical design and economic design of the control chart as well as the variable sampling rate design) are reviewed along with the introduction of research results for application to a new control procedure and reset chart. The joint application of a Markov chain approach and analytical solutions (when available) can guarantee the correct derivation of the properties. A Markov chain approach is recommended over simulation studies due to its precise derivation of properties and short calculation times.

Prediction method of node movement using Markov Chain in DTN (DTN에서 Markov Chain을 이용한 노드의 이동 예측 기법)

  • Jeon, Il-kyu;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.1013-1019
    • /
    • 2016
  • This paper describes a novel Context-awareness Markov Chain Prediction (CMCP) algorithm based on movement prediction using Markov chain in Delay Tolerant Network (DTN). The existing prediction models require additional information such as a node's schedule and delivery predictability. However, network reliability is lowered when additional information is unknown. To solve this problem, we propose a CMCP model based on node behaviour movement that can predict the mobility without requiring additional information such as a node's schedule or connectivity between nodes in periodic interval node behavior. The main contribution of this paper is the definition of approximate speed and direction for prediction scheme. The prediction of node movement forwarding path is made by manipulating the transition probability matrix based on Markov chain models including buffer availability and given interval time. We present simulation results indicating that such a scheme can be beneficial effects that increased the delivery ratio and decreased the transmission delay time of predicting movement path of the node in DTN.

Fast Image Splicing Detection Algorithm Using Markov Features (마코프 특징을 이용하는 고속 위조 영상 검출 알고리즘)

  • Kim, Soo-min;Park, Chun-Su
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.227-232
    • /
    • 2018
  • Nowadays, image manipulation is enormously popular and easier than ever with tons of convenient images editing tools. After several simple operations, users can get visually attractive images which easily trick viewers. In this paper, we propose a fast algorithm which can detect the image splicing using the Markov features. The proposed algorithm reduces the computational complexity by removing unnecessary Markov features which are not used in the image splicing detection process. The performance of the proposed algorithm is evaluated using a famous image splicing dataset which is publicly available. The experimental results show that the proposed technique outperforms the state-of-the-art splicing detection methods.

Daily Rainfall Simulation by Rainfall Frequency and State Model of Markov Chain (강우 빈도와 마코프 연쇄의 상태모형에 의한 일 강우량 모의)

  • Jung, Young-Hun;Kim, Buyng-Sik;Kim, Hung Soo;Shim, Myung-Pil
    • Journal of Wetlands Research
    • /
    • v.5 no.2
    • /
    • pp.1-13
    • /
    • 2003
  • In Korea, most of the rainfalls have been concentrated in the flood season and the flood study has received more attention than low flow analysis. One of the reasons that the analysis of low flows has less attention is the lacks of the required data like daily rainfall and so we have used the stochastic processes such as pulse noise, exponential distribution, and state model of Markov chain for the rainfall simulation in short term such as daily. Especially this study will pay attention to the state model of Markov chain. The previous study had performed the simulation study by the state model without considerations of the flood and non-flood periods and without consideration of the frequency of rainfall for the period of a state. Therefore this study considers afore mentioned two cases and compares the results with the known state model. As the results, the RMSEs of the suggested and known models represent the similar results. However, the PRE(relative percentage error) shows the suggested model is better results.

  • PDF

Anlaysis of Eukaryotic Sequence Pattern using GenScan (GenScan을 이용한 진핵생물의 서열 패턴 분석)

  • Jung, Yong-Gyu;Lim, I-Suel;Cha, Byung-Heun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.113-118
    • /
    • 2011
  • Sequence homology analysis in the substances in the phenomenon of life is to create database by sorting and indexing and to demonstrate the usefulness of informatics. In this paper, Markov models are used in GenScan program to convert the pattern of complex eukaryotic protein sequences. It becomes impossible to navigate the minimum distance, complexity increases exponentially as the exact calculation. It is used scorecard in amino acid substitutions between similar amino acid substitutions to have a differential effect score, and is applied the Markov models sophisticated concealment of the transition probability model. As providing superior method to translate sequences homologous sequences in analysis using blast p, Markov models. is secreted protein structure of sequence translations.