• Title/Summary/Keyword: Markov transition probability

Search Result 101, Processing Time 0.025 seconds

Hybrid Method to Compute the Cell Loss Probability in a Multiplexer with the Superposition of Heterogeneous ON/OFF Sources (이질적 ON/OFF 원을 입력으로 한 다중화 장치의 셀 손실률 계산을 위한 하이브리드 방법)

  • Hong, Jung-Sik;Kim, Sang-Baik
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.312-318
    • /
    • 1999
  • This paper considers the cell loss probability(CLP) in a multiplexer with the superposition of heterogeneous ON/OFF sources. The input traffic is composed of k classes. Traffic of class i is the superposition of M_(i) ON/OFF sources. Recently, the method based on the Markov modulated deterministic process(MMDP) is presented. Basically, it is the discretized model of stochastic fluid flow process(SFFP) and gives the CLP very fast, but under-estimates the CLP especially when the value of estimated CLP is very low. This paper develops the discretized model of Markov modulated Poisson process(MMPP). It is a special type of switched batch Bernoulli process(SBBP). Combining the transition probability matrix of MMDP and SBBP according to the state which is characterized by the arrival rate, this paper presents hybrid algorithm. The hybrid algorithm gives better estimate of CLP than that of MMDP and faster than SBBP.

  • PDF

Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model and Derivation of Rainfall Mass Curve using Transition Probability (비동질성 Markov 모형에 의한 시간강수량 모의 발생과 천이확률을 이용한 강우의 시간분포 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.265-276
    • /
    • 2008
  • The observed data of enough period need for design of hydrological works. But, most hydrological data aren't enough. Therefore in this paper, hourly precipitation generated by nonhomogeneous Markov chain model using variable Kernel density function. First, the Kernel estimator is used to estimate the transition probabilities. Second, wet hours are decided by transition probabilities and random numbers. Third, the amount of precipitation of each hours is calculated by the Kernel density function that estimated from observed data. At the results, observed precipitation data and generated precipitation data have similar statistic. Also, rainfall mass curve is derived by calculated transition probabilities for generation of hourly precipitation.

Evaluating the Investment in the Malaysian Construction Sector in the Long-run Using the Modified Internal Rate of Return: A Markov Chain Approach

  • SARSOUR, Wajeeh Mustafa;SABRI, Shamsul Rijal Muhammad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.281-287
    • /
    • 2020
  • In capital budgeting practices, investment project evaluations based on the net present value (NPV) and the internal rate of return (IRR) represent the traditional evaluation techniques. Compared with the traditional methods, the modified internal rate of return (MIRR) gives the opportunity to evaluate an investment in certain projet, while taking the changes in cash flows over time and issuing shares such as dividing shares, bonuses, and dividend for each end of the investment year into account. Therefore, this study aims to evaluate an investment in the Malaysian construction sector utilizing financial data for 39 public listed companies operating in the Malaysian construction sector over the period from Jan 1, 2007, to December 30, 2018, based on the MIRR method. Stochastic was studied in this study to estimate the estimated probability by applying the Markov chain model to the MIRR method where the transition matrix has two possible movements of either Good (G) or Bad (B). it is found that the long-run probability of getting a good investment is higher than the probability of getting a bad investment in the long-run, where were the probabilities of good and bad are 0.5119, 0.4881, respectively. Hence, investment in the Malaysian construction sector is recommended.

Markov Chain Properties of Sea Surface Temperature Anomalies at the Southeastern Coast of Korea (한국 남동연안 이상수온의 마르코프 연쇄 성질)

  • Kang, Yong-Q.;Gong, Yeong
    • 한국해양학회지
    • /
    • v.22 no.2
    • /
    • pp.57-62
    • /
    • 1987
  • The Markov chain properties of the sea surface temperature (SST) anomalies, namely, the dependency of the monthly SST anomaly on that of the previous month, are studied based on the SST data for 28years(1957-1984) at 5 stations in the southeastern coast of Korea. Wi classified the monthly SST anomalies at each station into the low, the normal and the high state, and computed transition probabilities between SST anomalies of two successive months The standard deviation of SST anomalies at each station is used as a reference for the classification of SST anomalies into 3states. The transition probability of the normal state to remain in the same state is about 0.8. The transition probability of the high or the low states to remain in the same state is about one half. The SST anomalies have almost no probability to transit from the high (the low) state to the low (the high) state. Statistical tests show that the Markov chain properties of SST anomalies are stationary in tine and homogeneous in space. The multi-step Markov chain analysis shows that the 'memory' of the SST anomalies at the coastal stations remains about 3 months.

  • PDF

Markov Model-based Static Obstacle Map Estimation for Perception of Automated Driving (자율주행 인지를 위한 마코브 모델 기반의 정지 장애물 추정 연구)

  • Yoon, Jeongsik;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • This paper presents a new method for construction of a static obstacle map. A static obstacle is important since it is utilized to path planning and decision. Several established approaches generate static obstacle map by grid method and counting algorithm. However, these approaches are occasionally ineffective since the density of LiDAR layer is low. Our approach solved this problem by applying probability theory. First, we converted all LiDAR point to Gaussian distribution to considers an uncertainty of LiDAR point. This Gaussian distribution represents likelihood of obstacle. Second, we modeled dynamic transition of a static obstacle map by adopting the Hidden Markov Model. Due to the dynamic characteristics of the vehicle in relation to the conditions of the next stage only, a more accurate map of the obstacles can be obtained using the Hidden Markov Model. Experimental data obtained from test driving demonstrates that our approach is suitable for mapping static obstacles. In addition, this result shows that our algorithm has an advantage in estimating not only static obstacles but also dynamic characteristics of moving target such as driving vehicles.

A Note on the Covariance Matrix of Order Statistics of Standard normal Observations

  • Lee, Hak-Myung
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.285-290
    • /
    • 2000
  • We noted a property of a stationary distribution on the matrix C, which is the covariance matrix of order statistics of standard normal distribution That is the sup norm of th powers of C is ee' divided by its dimension. The matrix C can be taken as a transition probability matrix in an acyclic Markov chain.

  • PDF

A study on the planted system of agricultural crops using non-stationary transition probability model (Non-Stationary 추이확률 모형에 의한 농작물의 체계에 관한 연구)

  • 강정혁;김여근
    • Korean Management Science Review
    • /
    • v.8 no.1
    • /
    • pp.3-11
    • /
    • 1991
  • Non-Stationary transition probabilities models which is incorporated into a Markov framework with exogenous variables to account for some of variability are discussed, and extended for alternative procedure. Also as an application of the methodology, the size change of aggregate time-series data on the planted system of agricultural crops is estimated, and evaluated for the precision of time-varying evolution statistically.

  • PDF

Comparative Application of Various Machine Learning Techniques for Lithology Predictions (다양한 기계학습 기법의 암상예측 적용성 비교 분석)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.21-34
    • /
    • 2016
  • In the present study, we applied various machine learning techniques comparatively for prediction of subsurface structures based on multiple secondary information (i.e., well-logging data). The machine learning techniques employed in this study are Naive Bayes classification (NB), artificial neural network (ANN), support vector machine (SVM) and logistic regression classification (LR). As an alternative model, conventional hidden Markov model (HMM) and modified hidden Markov model (mHMM) are used where additional information of transition probability between primary properties is incorporated in the predictions. In the comparisons, 16 boreholes consisted with four different materials are synthesized, which show directional non-stationarity in upward and downward directions. Futhermore, two types of the secondary information that is statistically related to each material are generated. From the comparative analysis with various case studies, the accuracies of the techniques become degenerated with inclusion of additive errors and small amount of the training data. For HMM predictions, the conventional HMM shows the similar accuracies with the models that does not relies on transition probability. However, the mHMM consistently shows the highest prediction accuracy among the test cases, which can be attributed to the consideration of geological nature in the training of the model.

Generation of Test Case in Interactive System using Markov Chain (마코프 연쇄를 이용한 대화형 시스템의 시험 사례 생성)

  • 이상준;김병기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.246-248
    • /
    • 1998
  • 본 논문에서는 대화형 시스템을 시험하기 위한 시험 사례를 마코프 연쇄의 통계적 확률 과정으로 생성하는 방안을 제시한다. 객체지향 방법론의 통합안인 UML에서는 클래스도(Class Diagram)가 표현할 수 없었던 시스템의 동적인 관점을 상태 전이도(State Transition Diagram)는 구체적으로 표현할 수 있다. 시스템의 사용법을 상태 전이도로 표현하고, 상태간의 전이 확률(Transition Probability)을 계산하여 사용법 연쇄(Usage Chain)를 구성한다. 사용법 연쇄는 다음 상태가 과거의 상태에 영향을 받지 않고 현시점의 상태에만 의존하는 이산 시간형 확률과정인 마코프 연쇄(Markov Chain)가 된다. 본 논문에서는 사용법 연쇄를 분석하여 상태 전이도의 상태와 원호가 어떤 범위에서 시험될 것인지 결정되었을 때, 사용법 연쇄의 전이 확률이 높은 순서별로 연결하여 시험 사례를 생성하는 방안을 제시하고, 예제를 설명한다.

  • PDF

A Prediction Method using property information change in DTN (DTN에서 속성 정보 변화에 따른 노드의 이동 예측 기법)

  • Jeon, Il-Kyu;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.425-426
    • /
    • 2016
  • In this paper, we proposed an algorithm based on movement prediction using Markov chain in delay tolerant networks(DTNs). The existing prediction algorithms require additional information such as a node's schedule and connectivity between nodes. However, network reliability is lowered when additional information is unknown. To solve this problem, we proposed an algorithm for predicting a movement path of the node by using Markov chain. The proposed algorithm maps speed and direction for a node into state, and predict movement path of the node using transition probability matrix generated by Markov chain. As the result, proposed algorithm show that the proposed algorithms has competitive delivery ratio but with less average latency.

  • PDF