• 제목/요약/키워드: Markov parameters

검색결과 343건 처리시간 0.022초

Two-Dimensional Model of Hidden Markov Mesh

  • 신봉기
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.772-779
    • /
    • 2006
  • The new model proposed in this paper is the hidden Markov mesh model or the 2D HMM with the causality of top-down and left-right direction. With the addition of the causality constraint, two algorithms for the evaluation of a model and the maximum likelihood estimation of model parameters have been developed theoretically which are based on the forward-backward algorithm. It is a more natural extension of the 1D HMM than other 2D models. The proposed method will provide a useful way of modeling highly variable image patterns such as offline cursive characters.

  • PDF

Markov 그라픽 데이타에 대한 incremental-runlength의 확률분포 (Incremental-runlength distribution for Markov graphic data source)

  • 김재균
    • 전기의세계
    • /
    • 제29권6호
    • /
    • pp.389-392
    • /
    • 1980
  • For Markov graphic source, it is well known that the conditional runlength coding for the runs of correct prediction is optimum for data compression. However, because of the simplicity in counting and the stronger concentration in distrubution, the incremental run is possibly a better parameter for coding than the run itself for some cases. It is shown that the incremental-runlength is also geometrically distributed as the runlength itself. The distribution is explicitly described with the basic parameters defined for a Markov model.

  • PDF

Queueing Performance Analysis of CDF-Based Scheduling over Markov Fading Channels

  • Kim, Yoora
    • 한국통신학회논문지
    • /
    • 제41권10호
    • /
    • pp.1240-1243
    • /
    • 2016
  • In this paper, we analyze the queueing performance of cumulative distribution function (CDF)-based opportunistic scheduling over Nakagami-m Markov fading channels. We derive the formula for the average queueing delay and the queue length distribution by constructing a two-dimensional Markov chain. Using our formula, we investigate the queueing performance for various fading parameters.

ANALYZING THE DURATION OF SUCCESS AND FAILURE IN MARKOV-MODULATED BERNOULLI PROCESSES

  • Yoora Kim
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.693-711
    • /
    • 2024
  • A Markov-modulated Bernoulli process is a generalization of a Bernoulli process in which the success probability evolves over time according to a Markov chain. It has been widely applied in various disciplines for modeling and analysis of systems in random environments. This paper focuses on providing analytical characterizations of the Markovmodulated Bernoulli process by introducing key metrics, including success period, failure period, and cycle. We derive expressions for the distributions and the moments of these metrics in terms of the model parameters.

Markov Chain Monte Carlo simulation based Bayesian updating of model parameters and their uncertainties

  • Sengupta, Partha;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.103-115
    • /
    • 2022
  • The prediction error variances for frequencies are usually considered as unknown in the Bayesian system identification process. However, the error variances for mode shapes are taken as known to reduce the dimension of an identification problem. The present study attempts to explore the effectiveness of Bayesian approach of model parameters updating using Markov Chain Monte Carlo (MCMC) technique considering the prediction error variances for both the frequencies and mode shapes. To remove the ergodicity of Markov Chain, the posterior distribution is obtained by Gaussian Random walk over the proposal distribution. The prior distributions of prediction error variances of modal evidences are implemented through inverse gamma distribution to assess the effectiveness of estimation of posterior values of model parameters. The issue of incomplete data that makes the problem ill-conditioned and the associated singularity problem is prudently dealt in by adopting a regularization technique. The proposed approach is demonstrated numerically by considering an eight-storey frame model with both complete and incomplete modal data sets. Further, to study the effectiveness of the proposed approach, a comparative study with regard to accuracy and computational efficacy of the proposed approach is made with the Sequential Monte Carlo approach of model parameter updating.

비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법 개발 (Development of Statistical Downscaling Model Using Nonstationary Markov Chain)

  • 권현한;김병식
    • 한국수자원학회논문집
    • /
    • 제42권3호
    • /
    • pp.213-225
    • /
    • 2009
  • 기존의 정상성 Markov Chain 모형은 자료 자체의 Markov 특성만을 고려하여 모의하는 기법으로서 수자원 설계에서 여러 가지 목적으로 이용되어 지고 있다. 그러나 일강수량의 천이확률 및 매개변수 등이 과거와 일정하다는 정상성을 기본 가정으로 하기 때문에 평균의 변동성 등과 같은 외부충격을 모형에 적용할 수 없다. 이러한 관점에서 본 연구의 가장 큰 목적은 기존일강수량 모형을 외부인자를 받아들일 수 있는 모형으로 개발하는 것이다. 즉, Markov Chain 모형의 매개변수인 천이확률과 확률분포형의 매개변수 등을 연결함수(link function)를 통해 외부인자와 연동하도록 하였으며 정준상관분석을 통해 매개변수를 추정하였다. 개발된 모형을 서울지방 1961-2006년까지의 일강수량 자료를 대상으로 검증하는 절차를 가졌다. 추정된 결과를 보면 계절강수량의 특성뿐만 아니라 일강수량의 특성 또한 적절하게 모의되는 것을 확인할 수 있다. 따라서 본 연구에서 개발된 모형은 GCM 예측결과를 입력자료로 활용한다면 일강수계열의 장단기 모의를 위한 downscaling 기법으로 사용될 수 있다. 또한, 기후변화 시나리오가 입력자료로 이용된다면 기후변화에 따른 수자원 영향 평가를 위한 downscaling 기법으로 활용이 가능할 것으로 판단된다.

Estimation of Parameters of a Two-State Markov Process by Interval Sampling

  • Jang, Joong-Soon;Bai, Do-Sun
    • 한국경영과학회지
    • /
    • 제6권2호
    • /
    • pp.57-64
    • /
    • 1981
  • This paper develops a method of modifying the usual maximum likelihood estimators of the parameters of a two state Markov process when the trajectory of the process can only he observed at regular epochs. The method utilizes the limiting behaviors of the process and the properties of state transition counts. An efficient adaptive strategy to be used together with the modified estimator is also proposed. The properties of the new estimators and the adaptive strategy are investigated using Monte Carlo simulation.

  • PDF

Hierarchical Bayes Analysis of Smoking and Lung Cancer Data

  • Oh, Man-Suk;Park, Hyun-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.115-128
    • /
    • 2002
  • Hierarchical models are widely used for inference on correlated parameters as a compromise between underfitting and overfilling problems. In this paper, we take a Bayesian approach to analyzing hierarchical models and suggest a Markov chain Monte Carlo methods to get around computational difficulties in Bayesian analysis of the hierarchical models. We apply the method to a real data on smoking and lung cancer which are collected from cities in China.

로그 우도 차이의 P-norm에 기반한 은닉 마르코프 파라미터 추정 알고리듬 (The p-Norm of Log-likelihood Difference Estimation Algorithm for Hidden Markov Models)

  • 윤성락;유창동
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.307-308
    • /
    • 2007
  • This paper proposes a discriminative training algorithm for estimating hidden Markov model (HMM) parameters. The proposed algorithm estimates the Parameters by minimizing the p-norm of log-likelihood difference (PLD) between the utterance probability given the correct transcription and the most competitive transcription.

  • PDF

보조 Markov 천이행렬을 이용한 DS/CDMA 다중도약 패킷무선망 분석 (On the Analysis of DS/CDMA Multi-hop Packet Radio Network with Auxiliary Markov Transient Matrix.)

  • 이정재
    • 한국통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.805-814
    • /
    • 1994
  • 본 논문에서는 실패상태와 성공상태를 포함시키는 보조 Markov 천이행렬을 이용하여 패킷무선망의 성능을 구할 수 있는 새로운 분석방식을 제시하고 패킷오류 발생이 송신 PRU의 수 X와 수신 PRU의 수 R로 이루어지는 망상태(X, R)의 변화에 미치는 영향을 고려한다. 패킷무선망은 연속시간 Markov 체인 모델 그리고 무선채널은 경판정 Viterbi복호기와 비트변환확산부호계열을 이용한 DS/BPSK CDMA에 대하여 검토한다. 슬롯되지 않은 분산된 다중도약 패킷무선망에서 무선채널의 채널심볼오류가 패킷오류 발생에 미치는 진행과정은 Poisson 분포 그리고 오류발생시간을 지수분포로 가정한다. 신호대 잡음비와 심볼당 확산부호계열의 칩수와 같은 무선채널의 매개변수와 PRU의 수와 허용된 트래픽율과 같은 망의 매개변수를 갖는 함수로 망처리량을 구함으로써 Markov 패킷무선망과 부호화된 DS/BPSK 무선채널을 결합하여 종합적으로 분석할 수 있음을 보인다.

  • PDF