• Title/Summary/Keyword: Markov parameters

Search Result 343, Processing Time 0.024 seconds

Performance Analysis of a Congestion cControl Mechanism Based on Active-WRED Under Multi-classes Traffic (멀티클래스 서비스 환경에서 Active-WRED 기반의 혼잡 제어 메커니즘 및 성능 분석)

  • Kim, Hyun-Jong;Kim, Jong-Chan;Choi, Seong-Gon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.125-133
    • /
    • 2008
  • In this paper, we propose active queue management mechanism (Active-WRED) to guarantee quality of the high priority service class in multi-class traffic service environment. In congestion situation, this mechanism increases drop probability of low priority traffic and reduces the drop probability of the high priority traffic, therefore it can improve the quality of the high priority service. In order to analyze the performance of our mechanism we introduce the stochastic analysis of a discrete-time queueing systems for the performance evaluation of the Active Queue Management (AQM) based congestion control mechanism called Weighted Random Early Detection (WRED) using a two-state Markov-Modulated Bernoulli arrival process (MMBP-2) as the traffic source. A two-dimensional discrete-time Harkov chain is introduced to model the Active-WRED mechanism for two traffic classes (Guaranteed Service and Best Effort Service) where each dimension corresponds to a traffic class with its own parameters.

Opportunistic Spectrum Access Based on a Constrained Multi-Armed Bandit Formulation

  • Ai, Jing;Abouzeid, Alhussein A.
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.134-147
    • /
    • 2009
  • Tracking and exploiting instantaneous spectrum opportunities are fundamental challenges in opportunistic spectrum access (OSA) in presence of the bursty traffic of primary users and the limited spectrum sensing capability of secondary users. In order to take advantage of the history of spectrum sensing and access decisions, a sequential decision framework is widely used to design optimal policies. However, many existing schemes, based on a partially observed Markov decision process (POMDP) framework, reveal that optimal policies are non-stationary in nature which renders them difficult to calculate and implement. Therefore, this work pursues stationary OSA policies, which are thereby efficient yet low-complexity, while still incorporating many practical factors, such as spectrum sensing errors and a priori unknown statistical spectrum knowledge. First, with an approximation on channel evolution, OSA is formulated in a multi-armed bandit (MAB) framework. As a result, the optimal policy is specified by the wellknown Gittins index rule, where the channel with the largest Gittins index is always selected. Then, closed-form formulas are derived for the Gittins indices with tunable approximation, and the design of a reinforcement learning algorithm is presented for calculating the Gittins indices, depending on whether the Markovian channel parameters are available a priori or not. Finally, the superiority of the scheme is presented via extensive experiments compared to other existing schemes in terms of the quality of policies and optimality.

Performance Analysis of Cellular Networks with D2D communication Based on Queuing Theory Model

  • Xin, Jianfang;Zhu, Qi;Liang, Guangjun;Zhang, Tiaojiao;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2450-2469
    • /
    • 2018
  • In this paper, we develop a spatiotemporal model to analysis of cellular user in underlay D2D communication by using stochastic geometry and queuing theory. Firstly, by exploring stochastic geometry to model the user locations, we derive the probability that the SINR of cellular user in a predefined interval, which constrains the corresponding transmission rate of cellular user. Secondly, in contrast to the previous studies with full traffic models, we employ queueing theory to evaluate the performance parameters of dynamic traffic model and formulate the cellular user transmission mechanism as a M/G/1 queuing model. In the derivation, Embedded Markov chain is introduced to depict the stationary distribution of cellular user queue status. Thirdly, the expressions of performance metrics in terms of mean queue length, mean throughput, mean delay and mean dropping probability are obtained, respectively. Simulation results show the validity and rationality of the theoretical analysis under different channel conditions.

The Classification of the Schizophrenia EEG Signal using Hidden Markov Model (은닉 마코프 모델을 이용한 정신질환자의 뇌파 판별)

  • 이경일;김필운;조진호;김명남
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.217-225
    • /
    • 2004
  • In this paper, a new automatic classification method for the normal EEC and schizophrenia EEC using hidden Markov model(HMM) is proposed. We used the feature parameters which are the variance for statistical stationary interval of the EEC and power spectrum ratio of the alpha, beta, and theta wave. The results were shown that high classification accuracy of 90.9% in the case of normal person, and 90.5% in the case of schizophrenia patient. It seems that proposed classification system is more efficient than the system using complicate signal processing process. Hence, the proposed method can be used at analysis and classification for complicated biosignal such as EEC and is expected to give considerable assistance to clinical diagnosis.

Image Completion using Belief Propagation Based on Planar Priorities

  • Xiao, Mang;Li, Guangyao;Jiang, Yinyu;Xie, Li;He, Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4405-4418
    • /
    • 2016
  • Automatic image completion techniques have difficulty processing images in which the target region has multiple planes or is non-facade. Here, we propose a new image completion method that uses belief propagation based on planar priorities. We first calculate planar information, which includes planar projection parameters, plane segments, and repetitive regularity extractions within the plane. Next, we convert this planar information into planar guide knowledge using the prior probabilities of patch transforms and offsets. Using the energy of the discrete Markov Random Field (MRF), we then define an objective function for image completion that uses the planar guide knowledge. Finally, in order to effectively optimize the MRF, we propose a new optimization scheme, termed Planar Priority-belief propagation that includes message-scheduling-based planar priority and dynamic label cropping. The results of experiment show that our approach exhibits advanced performance compared with existing approaches.

A Selectively Cumulative Sum(S-CUSUM) Control Chart (선택적 누적합(S-CUSUM) 관리도)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.3
    • /
    • pp.126-134
    • /
    • 2005
  • This paper proposes a selectively cumulative sum(S-CUSUM) control chart for detecting shifts in the process mean. The basic idea of the S-CUSUM chart is to accumulate previous samples selectively in order to increase the sensitivity. The S-CUSUM chart employs a threshold limit to determine whether to accumulate previous samples or not. Consecutive samples with control statistics out of the threshold limit are to be accumulated to calculate a standardized control statistic. If the control statistic falls within the threshold limit, only the next sample is to be used. During the whole sampling process, the S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L -consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain approach is employed to describe the S-CUSUM sampling process. Formulae for the steady state probabilities and the Average Run Length(ARL) during an in-control state are derived in closed forms. Some properties useful for designing statistical parameters are also derived and a statistical design procedure for the S-CUSUM chart is proposed. Comparative studies show that the proposed S-CUSUM chart is uniformly superior to the CUSUM chart or the Exponentially Weighted Moving Average(EWMA) chart with respect to the ARL performance.

Image Segmentation Based on Fusion of Range and Intensity Images (거리영상과 밝기영상의 fusion을 이용한 영상분할)

  • Chang, In-Su;Park, Rae-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.95-103
    • /
    • 1998
  • This paper proposes an image segmentation algorithm based on fusion of range and intensity images. Based on Bayesian theory, a priori knowledge is encoded by the Markov random field (MRF). A maximum a posteriori (MAP) estimator is constructed using the features extracted from range and intensity images. Objects are approximated by local planar surfaces in range images, and the parametric space is constructed with the surface parameters estimated pixelwise. In intensity images the ${\alpha}$-trimmed variance constructs the intensity feature. An image is segmented by optimizing the MAP estimator that is constructed using a likelihood function based on edge information. Computer simulation results shw that the proposed fusion algorithm effectively segments the images independentl of shadow, noise, and light-blurring.

  • PDF

Medium Access Control Protocol for Ad Hoc Networks Using Dynamic Contention Window (동적 경쟁윈도우를 이용한 Ad Hoc 망에서의 Medium Access Control 프로토콜)

  • Ahn, Hong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.35-42
    • /
    • 2008
  • Since Bianchi's 2-D Markov Chain Model considers collision problem only in ideal channel condition, it does not reflect real channel impaired by fading, interference, and noise. Distributed Coordination Function(DCF) doubles its contention window(CW) when transmission fails regardless of collision or transmission error. Increase of CW caused by transmission error degrade throughput and increase the delay. In this paper, we present quantitative analysis of the impact of the parameters such as contention window size(CW), transmission probability for a given time slot(${\Im}$), transmission failure probability($p_f$), on the system performance and provide a method how to decrease the initial CW to achieve equivalent performance.

  • PDF

A Campus Community-based Mobility Model for Routing in Opportunistic Networks

  • Pan, Daru;Fu, Min;Sun, Jiajia;Zou, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1034-1051
    • /
    • 2016
  • Mobility models are invaluable for determining the performance of routing protocols in opportunistic networks. The movement of nodes has a significant influence on the topological structure and data transmission in networks. In this paper, we propose a new mobility model called the campus-based community mobility model (CBCNM) that closely reflects the daily life pattern of students on a real campus. Consequent on a discovery that the pause time of nodes in their community follows a power law distribution, instead of a classical exponential distribution, we abstract the semi-Markov model from the movement of the campus nodes and analyze its rationality. Then, using the semi-Markov algorithm to switch the movement of the nodes between communities, we infer the steady-state probability of node distribution at random time points. We verified the proposed CBCNM via numerical simulations and compared all the parameters with real data in several aspects, including the nodes' contact and inter-contact times. The results obtained indicate that the CBCNM is highly adaptive to an actual campus scenario. Further, the model is shown to have better data transmission network performance than conventional models under various routing strategies.

System Identification of a Three-story Test Structure based on Finite Element Model (유한요소모델에 기초한 3층 건물모델의 시스템 식별)

  • 이상현;민경원;강경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.416-423
    • /
    • 2004
  • In this paper, an experimental verification of system identification technique for constructing finite element model is conducted for a three-story test structure equipped with an active mass driver (AMD). Twenty Gaussian white noises were used as the input for AMD, and the corresponding accelerations of each floor are measured. Then, the complex frequency response function (FRF) for the input, the force induced by the AMD, was obtained and subsequently, the Markov parameters and system matrices were estimated. The magnitudes as well as phase of experimentally obtained FRFs match well with those of analytically obtained FRFs.