• Title/Summary/Keyword: Markov localization

Search Result 13, Processing Time 0.017 seconds

Realtime Facial Expression Recognition from Video Sequences Using Optical Flow and Expression HMM (광류와 표정 HMM에 의한 동영상으로부터의 실시간 얼굴표정 인식)

  • Chun, Jun-Chul;Shin, Gi-Han
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.55-70
    • /
    • 2009
  • Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition is an important issue. In this paper, we present a novel approach to recognize facial expression from a sequence of input images using emotional specific HMM (Hidden Markov Model) and facial motion tracking based on optical flow. Conventionally, in the HMM which consists of basic emotional states, it is considered natural that transitions between emotions are imposed to pass through neutral state. However, in this work we propose an enhanced transition framework model which consists of transitions between each emotional state without passing through neutral state in addition to a traditional transition model. For the localization of facial features from video sequence we exploit template matching and optical flow. The facial feature displacements traced by the optical flow are used for input parameters to HMM for facial expression recognition. From the experiment, we can prove that the proposed framework can effectively recognize the facial expression in real time.

  • PDF

Topological SLAM Based on Voronoi Diagram and Extended Kalman Filter

  • Choi, Chang-Hyuk;Song, Jae-Bok;Kim, Mun-Sang;Chung, Woo-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.174-179
    • /
    • 2003
  • Through the simultaneous localization and map building (SLAM) technique, a robot can create maps about its unknown environment while it continuously localizes its position. Grid maps and feature maps have been widely used for SLAM together with application of probability methods and POMDP (partially observed Markov decision process). But this approach based on grid maps suffers from enormous computational burden. Topological maps, however, have drawn more attention these days because they are compact, provide natural interfaces, and are easily applicable to path planning in comparison with grid maps. Some topological SLAM techniques like GVG (generalized Voronoi diagram) were introduced, but it enables the robot to decide only whether the current position is part of GVG branch or not in the GVG algorithm. In this paper, therefore, to overcome these problems, we present a method for updating a global topological map from the local topological maps. These local topological maps are created through a labeled Voronoi diagram algorithm from the local grid map built based on the sensor information at the current robot position. And the nodes of a local topological map can be utilized as the features of the environment because it is robust in light of visibility problem. The geometric information of the feature is applied to the extended Kalman filter and the SLAM in the indoor environment is accomplished. A series of simulations have been conducted using a two-wheeled mobile robot equipped with a laser scanner. It is shown that the proposed scheme can be applied relatively well.

  • PDF

Alphabetical Gesture Recognition using HMM (HMM을 이용한 알파벳 제스처 인식)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF