• Title/Summary/Keyword: Markov Network

Search Result 374, Processing Time 0.028 seconds

A study on the Recognition of Korean Proverb Using Neural Network and Markov Model (신경회로망과 Markov 모델을 이용한 한국어 속담 인식에 관한 연구)

  • 홍기원;김선일;이행세
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1663-1669
    • /
    • 1995
  • This paper is a study on the recognition of Korean proverb using neural network and Markov model. The neural network uses, at the stage of training neurons, features such as the rate of zero crossing, short-term energy and PLP-Cepstrum, covering a time of 300ms long. Markov models were generated by the recognized phoneme strings. The recognition of words and proverbs using Markov models have been carried out. Experimental results show that phoneme and word recognition rates are 81. 2%, 94.0% respectively for Korean proverb recognition experiments.

  • PDF

Network Security Situation Assessment Method Based on Markov Game Model

  • Li, Xi;Lu, Yu;Liu, Sen;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2414-2428
    • /
    • 2018
  • In order to solve the problem that the current network security situation assessment methods just focus on the attack behaviors, this paper proposes a kind of network security situation assessment method based on Markov Decision Process and Game theory. The method takes the Markov Game model as the core, and uses the 4 levels data fusion to realize the evaluation of the network security situation. In this process, the Nash equilibrium point of the game is used to determine the impact on the network security. Experiments show that the results of this method are basically consistent with the expert evaluation data. As the method takes full account of the interaction between the attackers and defenders, it is closer to reality, and can accurately assess network security situation.

Performance Evaluation of the WiMAX Network Based on Combining the 2D Markov Chain and MMPP Traffic Model

  • Saha, Tonmoy;Shufean, Md. Abu;Alam, Mahbubul;Islam, Md. Imdadul
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.653-678
    • /
    • 2011
  • WiMAX is intended for fourth generation wireless mobile communications where a group of users are provided with a connection and a fixed length queue. In present literature traffic of such network is analyzed based on the generator matrix of the Markov Arrival Process (MAP). In this paper a simple analytical technique of the two dimensional Markov chain is used to obtain the trajectory of the congestion of the network as a function of a traffic parameter. Finally, a two state phase dependent arrival process is considered to evaluate probability states. The entire analysis is kept independent of modulation and coding schemes.

On the Analysis of DS/CDMA Multi-hop Packet Radio Network with Auxiliary Markov Transient Matrix. (보조 Markov 천이행렬을 이용한 DS/CDMA 다중도약 패킷무선망 분석)

  • 이정재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.805-814
    • /
    • 1994
  • In this paper, we introduce a new method which is available for analyzing the throughput of the packet radio network by using the auxiliary Markov transient matrix with a failure state and a success state. And we consider the effect of symbol error for the network state(X, R) consisted of the number of transmitting PRU X and receiving PRU R. We examine the packet radio network of a continuous time Markov chain model, and the direct sequence binary phase shift keying CDMA radio channel with hard decision Viterbi decoding and bit-by-bit changing spreading code. For the unslotted distributed multi-hop packet radio network, we assume that the packet error due to a symbol error of radio channel has Poisson process, and the time period of an error occurrence is exponentially distributed. Through the throughputs which are found as a function of radio channel parameters, such as the received signal to noise ratio and chips of spreading code per symbol, and of network parameters, such as the number of PRU and offered traffic rate, it is shown that this composite analysis enables us to combine the Markovian packet radio network model with a coded DS/BPSK CDMA radio channel.

  • PDF

Prediction method of node movement using Markov Chain in DTN (DTN에서 Markov Chain을 이용한 노드의 이동 예측 기법)

  • Jeon, Il-kyu;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.1013-1019
    • /
    • 2016
  • This paper describes a novel Context-awareness Markov Chain Prediction (CMCP) algorithm based on movement prediction using Markov chain in Delay Tolerant Network (DTN). The existing prediction models require additional information such as a node's schedule and delivery predictability. However, network reliability is lowered when additional information is unknown. To solve this problem, we propose a CMCP model based on node behaviour movement that can predict the mobility without requiring additional information such as a node's schedule or connectivity between nodes in periodic interval node behavior. The main contribution of this paper is the definition of approximate speed and direction for prediction scheme. The prediction of node movement forwarding path is made by manipulating the transition probability matrix based on Markov chain models including buffer availability and given interval time. We present simulation results indicating that such a scheme can be beneficial effects that increased the delivery ratio and decreased the transmission delay time of predicting movement path of the node in DTN.

The Minimum-cost Network Selection Scheme to Guarantee the Periodic Transmission Opportunity in the Multi-band Maritime Communication System (멀티밴드 해양통신망에서 전송주기를 보장하는 최소 비용의 망 선택 기법)

  • Cho, Ku-Min;Yun, Chang-Ho;Kang, Chung-G
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.139-148
    • /
    • 2011
  • This paper presents the minimum-cost network selection scheme which determines the transmission instance in the multi-band maritime communication system, so that the shipment-related real-time information can be transmitted within the maximum allowed period. The transmission instances and the corresponding network selection process are modeled by a Markov Decision Process (MDP), for the channel model in the 2-state Markov chain, which can be solved by stochastic dynamic programming. It derives the minimum-cost network selection rule, which can reduce the network cost significantly as compared with the straight-forward scheme with a periodic transmission.

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

Splice Site Detection Using a Combination of Markov Model and Neural Network

  • M Abdul Baten, A.K.;Halgamuge, Saman K.;Wickramarachchi, Nalin;Rajapakse, Jagath C.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.167-172
    • /
    • 2005
  • This paper introduces a method which improves the performance of the identification of splice sites in the genomic DNA sequence of eukaryotes. This method combines a low order Markov model in series with a neural network for the predictions of splice sites. The lower order Markov model incorporates the biological knowledge surrounding the splice sites as probabilistic parameters. The Neural network takes the Markov encoded parameters as the inputs and produces the prediction. Two types of neural networks are used for the comparison. This method reduces the computational complexity and shows encouraging accuracy in the predictions of splice sites when applied to several standard splice site dataset.

  • PDF

Isolated-Word Recognition Using Neural Network and Hidden Markov Model (Neural-HMM을 이용한 고립단어 인식)

  • 김연수;김창석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1199-1205
    • /
    • 1992
  • In this paper, a Korean word recognition method which usese Neural Network and Hidden Markov Models(HMM) is proposed to improve a recognition rate with a small amount of learning data. The method reduces the fluctuation due to personal differences which is a problem to a HMM recognition system. In this method, effective recognizer is designed by the complement of each recognition result of the Hidden Markov Models(HMM) and Neural Network. In order to evaluate this model, word recognition experiment is carried out for 28 cities which is DDD area names uttered by two male and a female in twenties. As a result of testing HMM with 8 state, codeword is 64, the recognition rate 91[%], as a result of testing Neural network(NN) with 64 codeword the recognition rate is 89[%]. Finally, as a result of testing NN-HMM with 64 codeword which the best condition in former tests, the recognition rate is 95[%].

  • PDF

Models for Internet Traffic Sharing in Computer Network

  • Alrusaini, Othman A.;Shafie, Emad A.;Elgabbani, Badreldin O.S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.28-34
    • /
    • 2021
  • Internet Service Providers (ISPs) constantly endeavor to resolve network congestion, in order to provide fast and cheap services to the customers. This study suggests two models based on Markov chain, using three and four access attempts to complete the call. It involves a comparative study of four models to check the relationship between Internet Access sharing traffic, and the possibility of network jamming. The first model is a Markov chain, based on call-by-call attempt, whereas the second is based on two attempts. Models III&IV suggested by the authors are based on the assumption of three and four attempts. The assessment reveals that sometimes by increasing the number of attempts for the same operator, the chances for the customers to complete the call, is also increased due to blocking probabilities. Three and four attempts express the actual relationship between traffic sharing and blocking probability based on Markov using MATLAB tools with initial probability values. The study reflects shouting results compared to I&II models using one and two attempts. The success ratio of the first model is 84.5%, and that of the second is 90.6% to complete the call, whereas models using three and four attempts have 94.95% and 95.12% respectively to complete the call.