• Title/Summary/Keyword: Markov Chain Monte Carlo (MCMC) method

Search Result 66, Processing Time 0.021 seconds

MCMC Approach for Parameter Estimation in the Structural Analysis and Prognosis

  • An, Da-Wn;Gang, Jin-Hyuk;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.641-649
    • /
    • 2010
  • Estimation of uncertain parameters is required in many engineering problems which involve probabilistic structural analysis as well as prognosis of existing structures. In this case, Bayesian framework is often employed, which is to represent the uncertainty of parameters in terms of probability distributions conditional on the provided data. The resulting form of distribution, however, is not amenable to the practical application due to its complex nature making the standard probability functions useless. In this study, Markov chain Monte Carlo (MCMC) method is proposed to overcome this difficulty, which is a modern computational technique for the efficient and straightforward estimation of parameters. Three case studies that implement the estimation are presented to illustrate the concept. The first one is an inverse estimation, in which the unknown input parameters are inversely estimated based on a finite number of measured response data. The next one is a metamodel uncertainty problem that arises when the original response function is approximated by a metamodel using a finite set of response values. The last one is a prognostics problem, in which the unknown parameters of the degradation model are estimated based on the monitored data.

Bayesian Parameter Estimation for Prognosis of Crack Growth under Variable Amplitude Loading (변동진폭하중 하에서 균열성장예지를 위한 베이지안 모델변수 추정법)

  • Leem, Sang-Hyuck;An, Da-Wn;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1299-1306
    • /
    • 2011
  • In this study, crack-growth model parameters subjected to variable amplitude loading are estimated in the form of a probability distribution using the method of Bayesian parameter estimation. Huang's model is employed to describe the retardation and acceleration of the crack growth during the loadings. The Markov Chain Monte Carlo (MCMC) method is used to obtain samples of the parameters following the probability distribution. As the conventional MCMC method often fails to converge to the equilibrium distribution because of the increased complexity of the model under variable amplitude loading, an improved MCMC method is introduced to overcome this shortcoming, in which a marginal (PDF) is employed as a proposal density function. The model parameters are estimated on the basis of the data from several test specimens subjected to constant amplitude loading. The prediction is then made under variable amplitude loading for the same specimen, and validated by the ground-truth data using the estimated parameters.

Multinomial Group Testing with Small-Sized Pools and Application to California HIV Data: Bayesian and Bootstrap Approaches

  • Kim, Jong-Min;Heo, Tae-Young;An, Hyong-Gin
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2006.06a
    • /
    • pp.131-159
    • /
    • 2006
  • This paper consider multinomial group testing which is concerned with classification each of N given units into one of k disjoint categories. In this paper, we propose exact Bayesian, approximate Bayesian, bootstrap methods for estimating individual category proportions using the multinomial group testing model proposed by Bar-Lev et al (2005). By the comparison of Mcan Squre Error (MSE), it is shown that the exact Bayesian method has a bettor efficiency and consistency than maximum likelihood method. We suggest an approximate Bayesian approach using Markov Chain Monte Carlo (MCMC) for posterior computation. We derive exact credible intervals based on the exact Bayesian estimators and present confidence intervals using the bootstrap and MCMC. These intervals arc shown to often have better coverage properties and similar mean lengths to maximum likelihood method already available. Furthermore the proposed models are illustrated using data from a HIV blooding test study throughout California, 2000.

  • PDF

A Change-Point Analysis of Oil Supply Disruption : Bayesian Approach (석유공급교란에 대한 변화점 분석 및 분포 추정 : 베이지안 접근)

  • Park, Chun-Gun;Lee, Sung-Su
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.4
    • /
    • pp.159-165
    • /
    • 2007
  • Using statistical methods a change-point analysis of oil supply disruption is conducted. The statistical distribution of oil supply disruption is a weibull distribution. The detection of the change-point is applied to Bayesian method and weibull parameters are estimated through Markov chain monte carlo and parameter approach. The statistical approaches to the estimation for the change-point and weibull parameters is implemented with the sets of simulated and real data with small sizes of samples.

Sparse Data Cleaning using Multiple Imputations

  • Jun, Sung-Hae;Lee, Seung-Joo;Oh, Kyung-Whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.119-124
    • /
    • 2004
  • Real data as web log file tend to be incomplete. But we have to find useful knowledge from these for optimal decision. In web log data, many useful things which are hyperlink information and web usages of connected users may be found. The size of web data is too huge to use for effective knowledge discovery. To make matters worse, they are very sparse. We overcome this sparse problem using Markov Chain Monte Carlo method as multiple imputations. This missing value imputation changes spare web data to complete. Our study may be a useful tool for discovering knowledge from data set with sparseness. The more sparseness of data in increased, the better performance of MCMC imputation is good. We verified our work by experiments using UCI machine learning repository data.

Bayesian Model for Cost Estimation of Construction Projects

  • Kim, Sang-Yon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.91-99
    • /
    • 2011
  • Bayesian network is a form of probabilistic graphical model. It incorporates human reasoning to deal with sparse data availability and to determine the probabilities of uncertain cases. In this research, bayesian network is adopted to model the problem of construction project cost. General information, time, cost, and material, the four main factors dominating the characteristic of construction costs, are incorporated into the model. This research presents verify a model that were conducted to illustrate the functionality and application of a decision support system for predicting the costs. The Markov Chain Monte Carlo (MCMC) method is applied to estimate parameter distributions. Furthermore, it is shown that not all the parameters are normally distributed. In addition, cost estimates based on the Gibbs output is performed. It can enhance the decision the decision-making process.

Bayesian and maximum likelihood estimations from exponentiated log-logistic distribution based on progressive type-II censoring under balanced loss functions

  • Chung, Younshik;Oh, Yeongju
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.425-445
    • /
    • 2021
  • A generalization of the log-logistic (LL) distribution called exponentiated log-logistic (ELL) distribution on lines of exponentiated Weibull distribution is considered. In this paper, based on progressive type-II censored samples, we have derived the maximum likelihood estimators and Bayes estimators for three parameters, the survival function and hazard function of the ELL distribution. Then, under the balanced squared error loss (BSEL) and the balanced linex loss (BLEL) functions, their corresponding Bayes estimators are obtained using Lindley's approximation (see Jung and Chung, 2018; Lindley, 1980), Tierney-Kadane approximation (see Tierney and Kadane, 1986) and Markov Chain Monte Carlo methods (see Hastings, 1970; Gelfand and Smith, 1990). Here, to check the convergence of MCMC chains, the Gelman and Rubin diagnostic (see Gelman and Rubin, 1992; Brooks and Gelman, 1997) was used. On the basis of their risks, the performances of their Bayes estimators are compared with maximum likelihood estimators in the simulation studies. In this paper, research supports the conclusion that ELL distribution is an efficient distribution to modeling data in the analysis of survival data. On top of that, Bayes estimators under various loss functions are useful for many estimation problems.

A Bayesian Approach to Geophysical Inverse Problems (베이지안 방식에 의한 지구물리 역산 문제의 접근)

  • Oh Seokhoon;Chung Seung-Hwan;Kwon Byung-Doo;Lee Heuisoon;Jung Ho Jun;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2002
  • This study presents a practical procedure for the Bayesian inversion of geophysical data. We have applied geostatistical techniques for the acquisition of prior model information, then the Markov Chain Monte Carlo (MCMC) method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter.

Bayesian Clustering of Prostate Cancer Patients by Using a Latent Class Poisson Model (잠재그룹 포아송 모형을 이용한 전립선암 환자의 베이지안 그룹화)

  • Oh Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2005
  • Latent Class model has been considered recently by many researchers and practitioners as a tool for identifying heterogeneous segments or groups in a population, and grouping objects into the segments. In this paper we consider data on prostate cancer patients from Korean National Cancer Institute and propose a method for grouping prostate cancer patients by using latent class Poisson model. A Bayesian approach equipped with a Markov chain Monte Carlo method is used to overcome the limit of classical likelihood approaches. Advantages of the proposed Bayesian method are easy estimation of parameters with their standard errors, segmentation of objects into groups, and provision of uncertainty measures for the segmentation. In addition, we provide a method to determine an appropriate number of segments for the given data so that the method automatically chooses the number of segments and partitions objects into heterogeneous segments.

Bayesian Inference for the Zero In ated Negative Binomial Regression Model (제로팽창 음이항 회귀모형에 대한 베이지안 추론)

  • Shim, Jung-Suk;Lee, Dong-Hee;Jun, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.951-961
    • /
    • 2011
  • In this paper, we propose a Bayesian inference using the Markov Chain Monte Carlo(MCMC) method for the zero inflated negative binomial(ZINB) regression model. The proposed model allows the regression model for zero inflation probability as well as the regression model for the mean of the dependent variable. This extends the work of Jang et al. (2010) to the fully defiend ZINB regression model. In addition, we apply the proposed method to a real data example, and compare the efficiency with the zero inflated Poisson model using the DIC. Since the DIC of the ZINB is smaller than that of the ZIP, the ZINB model shows superior performance over the ZIP model in zero inflated count data with overdispersion.