• 제목/요약/키워드: Markov Chain Model

검색결과 560건 처리시간 0.022초

마코브 연산 기반의 함정 분산 제어망을 위한 실시간 고장 노드 탐지 기법 연구 (Markov Model-Driven in Real-time Faulty Node Detection for Naval Distributed Control Networked Systems)

  • 노동희;김동성
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1131-1135
    • /
    • 2014
  • This paper proposes the enhanced faulty node detection scheme with hybrid algorithm using Markov-chain model on BCH (Bose-Chaudhuri-Hocquenghem) code in naval distributed control networked systems. The probabilistic model-driven approach, on Markov-chain model, in this paper uses the faulty weighting interval factors, which are based on the BCH code. In this scheme, the master node examines each slave-nodes continuously using three defined states : Good, Warning, Bad-state. These states change using the probabilistic calculation method. This method can improve the performance of detecting the faulty state node more efficiently. Simulation results show that the proposed method can improve the accuracy in faulty node detection scheme for real-time naval distributed control networked systems.

DTN에서 Markov Chain을 이용한 노드의 이동 예측 기법 (Prediction method of node movement using Markov Chain in DTN)

  • 전일규;이강환
    • 한국정보통신학회논문지
    • /
    • 제20권5호
    • /
    • pp.1013-1019
    • /
    • 2016
  • 본 논문에서는 Delay Tolerant Network(DTN)에서 Markov chain으로 노드의 속성 정보를 분석하여 노드의 이동경로를 예측하는 알고리즘을 제안한다. 기존 DTN에서의 예측기반 라우팅 기법은 노드가 미리 정해진 스케줄에 따라 이동하게 된다. 이러한 네트워크에서는 스케줄을 예측할 수 없는 환경에서 노드의 신뢰성이 낮아지는 문제가 있다. 본 논문에서는 이러한 문제를 극복하기 위해 노드의 속성 정보를 Markov chain을 적용하고 일정 구간에서 시간에 따른 노드의 이동 경로를 예측하는 CMCP(Context-awareness Markov-Chain Prediction)알고리즘을 제안한다. 제안하는 알고리즘은 노드의 속성 정보 중 노드의 속력과 방향성을 근사한 후 Markov chain을 이용하여 제한된 주기와 버퍼의 범위에서 확률전이 매트릭스를 생성하여 노드의 이동 경로를 예측하는 알고리즘이다. 주어진 모의실험 환경에서 노드의 이동 경로 예측을 통해 중계 노드를 선정하여 라우팅 함으로써 메시지 전송 지연 시간이 감소하고 전송률이 증가함 보여주고 있다.

Markov Chain을 이용한 핸드폰 메뉴 선택 예측 (Prediction of Mobile Phone Menu Selection with Markov Chains)

  • 이석원;명노해
    • 대한산업공학회지
    • /
    • 제33권4호
    • /
    • pp.402-409
    • /
    • 2007
  • Markov Chains has proven to be effective in predicting human behaviors in the areas of web site assess, multimedia educational system, and driving environment. In order to extend an application area of predicting human behaviors using Markov Chains, this study was conducted to investigate whether Markov Chains could be used to predict human behavior in selecting mobile phone menu item. Compared to the aforementioned application areas, this study has different aspects in using Markov Chains : m-order 1-step Markov Model and the concept of Power Law of Learning. The results showed that human behaviors in predicting mobile phone menu selection were well fitted into with m-order 1-step Markov Model and Power Law of Learning in allocating history path vector weights. In other words, prediction of mobile phone menu selection with Markov Chains was capable of user's actual menu selection.

CHAIN DEPENDENCE AND STATIONARITY TEST FOR TRANSITION PROBABILITIES OF MARKOV CHAIN UNDER LOGISTIC REGRESSION MODEL

  • Sinha Narayan Chandra;Islam M. Ataharul;Ahmed Kazi Saleh
    • Journal of the Korean Statistical Society
    • /
    • 제35권4호
    • /
    • pp.355-376
    • /
    • 2006
  • To identify whether the sequence of observations follows a chain dependent process and whether the chain dependent or repeated observations follow stationary process or not, alternative procedures are suggested in this paper. These test procedures are formulated on the basis of logistic regression model under the likelihood ratio test criterion and applied to the daily rainfall occurrence data of Bangladesh for selected stations. These test procedures indicate that the daily rainfall occurrences follow a chain dependent process, and the different types of transition probabilities and overall transition probabilities of Markov chain for the occurrences of rainfall follow a stationary process in the Mymensingh and Rajshahi areas, and non-stationary process in the Chittagong, Faridpur and Satkhira areas.

A Study on Character Recognition using HMM and the Mason's Theorem

  • Lee Sang-kyu;Hur Jung-youn
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.259-262
    • /
    • 2004
  • In most of the character recognition systems, the method of template matching or statistical method using hidden Markov model is used to extract and recognize feature shapes. In this paper, we used modified chain-code which has 8-directions but 4-codes, and made the chain-code of hand-written character, after that, converted it into transition chain-code by applying to HMM(Hidden Markov Model). The transition chain code by HMM is analyzed as signal flow graph by Mason's theory which is generally used to calculate forward gain at automatic control system. If the specific forward gain and feedback gain is properly set, the forward gain of transition chain-code using Mason's theory can be distinguished depending on each object for recognition. This data of the gain is reorganized as tree structure, hence making it possible to distinguish different hand-written characters. With this method, $91\%$ recognition rate was acquired.

  • PDF

Markov 연쇄를 적용한 확률지도연구 (A study of guiding probability applied markov-chain)

  • 이태규
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 1986
  • It is a common saying that markov-chain is a special case of probability course. That is to say, It means an unchangeable markov-chain process of the transition-probability of discontinuous time. There are two kinds of ways to show transition probability parade matrix theory. The first is the way by arrangement of a rightangled tetragon. The second part is a vertical measurement and direction sing by transition-circle. In this essay, I try to find out existence of procession for transition-probability applied markov-chain. And it is possible for me to know not only, what it is basic on a study of chain but also being applied to abnormal problems following a flow change and statistic facts expecting to use as a model of air expansion in physics.

  • PDF

Queueing System Operating in Random Environment as a Model of a Cell Operation

  • Kim, Chesoong;Dudin, Alexander;Dudina, Olga;Kim, Jiseung
    • Industrial Engineering and Management Systems
    • /
    • 제15권2호
    • /
    • pp.131-142
    • /
    • 2016
  • We consider a multi-server queueing system without buffer and with two types of customers as a model of operation of a mobile network cell. Customers arrive at the system in the marked Markovian arrival flow. The service times of customers are exponentially distributed with parameters depending on the type of customer. A part of the available servers is reserved exclusively for service of first type customers. Customers who do not receive service upon arrival, can make repeated attempts. The system operation is influenced by random factors, leading to a change of the system parameters, including the total number of servers and the number of reserved servers. The behavior of the system is described by the multi-dimensional Markov chain. The generator of this Markov chain is constructed and the ergodicity condition is derived. Formulas for computation of the main performance measures of the system based on the stationary distribution of the Markov chain are derived. Numerical examples are presented.

Markov Chain Monte Carlo를 이용한 반도체 결함 클러스터링 파라미터의 추정 (Estimation of Defect Clustering Parameter Using Markov Chain Monte Carlo)

  • 하정훈;장준현;김준현
    • 산업경영시스템학회지
    • /
    • 제32권3호
    • /
    • pp.99-109
    • /
    • 2009
  • Negative binomial yield model for semiconductor manufacturing consists of two parameters which are the average number of defects per die and the clustering parameter. Estimating the clustering parameter is quite complex because the parameter has not clear closed form. In this paper, a Bayesian approach using Markov Chain Monte Carlo is proposed to estimate the clustering parameter. To find an appropriate estimation method for the clustering parameter, two typical estimators, the method of moments estimator and the maximum likelihood estimator, and the proposed Bayesian estimator are compared with respect to the mean absolute deviation between the real yield and the estimated yield. Experimental results show that both the proposed Bayesian estimator and the maximum likelihood estimator have excellent performance and the choice of method depends on the purpose of use.

강우 빈도와 마코프 연쇄의 상태모형에 의한 일 강우량 모의 (Daily Rainfall Simulation by Rainfall Frequency and State Model of Markov Chain)

  • 정영훈;김병식;김형수;심명필
    • 한국습지학회지
    • /
    • 제5권2호
    • /
    • pp.1-13
    • /
    • 2003
  • In Korea, most of the rainfalls have been concentrated in the flood season and the flood study has received more attention than low flow analysis. One of the reasons that the analysis of low flows has less attention is the lacks of the required data like daily rainfall and so we have used the stochastic processes such as pulse noise, exponential distribution, and state model of Markov chain for the rainfall simulation in short term such as daily. Especially this study will pay attention to the state model of Markov chain. The previous study had performed the simulation study by the state model without considerations of the flood and non-flood periods and without consideration of the frequency of rainfall for the period of a state. Therefore this study considers afore mentioned two cases and compares the results with the known state model. As the results, the RMSEs of the suggested and known models represent the similar results. However, the PRE(relative percentage error) shows the suggested model is better results.

  • PDF

Text Steganography Based on Ci-poetry Generation Using Markov Chain Model

  • Luo, Yubo;Huang, Yongfeng;Li, Fufang;Chang, Chinchen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4568-4584
    • /
    • 2016
  • Steganography based on text generation has become a hot research topic in recent years. However, current text-generation methods which generate texts of normal style have either semantic or syntactic flaws. Note that texts of special genre, such as poem, have much simpler language model, less grammar rules, and lower demand for naturalness. Motivated by this observation, in this paper, we propose a text steganography that utilizes Markov chain model to generate Ci-poetry, a classic Chinese poem style. Since all Ci poems have fixed tone patterns, the generation process is to select proper words based on a chosen tone pattern. Markov chain model can obtain a state transfer matrix which simulates the language model of Ci-poetry by learning from a given corpus. To begin with an initial word, we can hide secret message when we use the state transfer matrix to choose a next word, and iterating until the end of the whole Ci poem. Extensive experiments are conducted and both machine and human evaluation results show that our method can generate Ci-poetry with higher naturalness than former researches and achieve competitive embedding rate.