• Title/Summary/Keyword: Market sentiment

Search Result 132, Processing Time 0.02 seconds

Stock Market Sentiment and Stock Returns

  • Kim, Taehyuk;Ryu, Hoyoung
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2759-2769
    • /
    • 2018
  • The behavioral finance view on the existence of asset pricing anomalies is based on two factors: investors' sentiment and limits to arbitrage. This paper tries to examine the effect of investors' sentiment on the stock price in the Korean stock market. In order to measure investors' sentiment, we constructed the sentiment index using principal component of five sentiment variables. By using sentiment index as an additional independent variable to three risk factors, impacts of the sentiment index on individual stocks and 25 portfolios sorted by BM-size are examined. Main results found are as follows: 1) not only all three risk factors show positive impacts on the return of individual stock, but also the sentiment index has a positive impact. SI alone explains 15% of individual return variation. 2) among four independent variables, the most important factor turned out to be the market risk factor and investors' sentiment has better explanatory power on stock price than the size effect. 3) after controlling the market risk factor, the coefficient of the sentiment index for the smallest size and highest book/market value portfolios is significantly positive. 4) all the coefficients of the sentiment index for 25 portfolios sorted by BM-size have significant positive value after controlling size or (and) value.

The Motivating Role of Sentiment in ESG Performance: Evidence from Japanese Companies

  • Vuong, Ngoc Bao;Suzuki, Yoshihisa
    • East Asian Economic Review
    • /
    • v.25 no.2
    • /
    • pp.125-150
    • /
    • 2021
  • The paper investigates investor sentiment's role in boosting Japanese companies to enhance their environmental, social, and corporate governance (ESG) performance. Using ESG scores of 367 firms between 2005 and 2019 from the ASSET4 database, we find that negative sentiment in the previous year, both firm and market level, can be a stimulation for the company's commitments to its ESG activities next year. Notably, the moderating effect of the business sector and economic cycle on the sentiment-ESG inference are detected in our study differentiating between corporate and market sentiment, which have never been reported before. In detail, we discover that the impact of firm-specific sentiment is less pronounced for high-sensitive ESG firms. On the other hand, the driving force of market sentiment on corporate social behaviors weakens when economic recessions happen. Our results are robust after controlling for potential endogeneity issues and using alternative proxies for market sentiment.

Market sentiment and its effect on real estate return: evidence from China Shenzhen

  • LI, ZHUO
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.243-251
    • /
    • 2022
  • In this paper, we propose a phenomenon that analyze the impact of market sentiment on China's real estate market through the perspective of behavioral economics. Previously, real estate market analyzation basically focus on some fundamental principles which include market price, monetary policies and income, etc. However, little research has explored market sentiment and its influence. By using principal components analysis (PCA), this study first creates buyer's sentiment and seller's sentiment to measure the heat of China's real estate market. Different from using traditional estimation method, the vector autoregressive model (VAR) is used to analyze how both sentiments affect real estate return. The overall results show that from unit root test and impulse response analyzation, the impact of seller's sentiment is positive to real estate market while buyer's sentiment is negative. At the same time, the higher seller's sentiment will have different influence on the housing market compared with the higher buyer's sentiment.

Is Foreign Investors' behavior Involved in Investor Sentiment? Evidence Based on the Korean Stock Crashes

  • Choi, Suyoung
    • Journal of East Asia Management
    • /
    • v.3 no.1
    • /
    • pp.41-55
    • /
    • 2022
  • This study investigates whether foreign investors' behavior is involved in firm-specific investor sentiment. Because the mixed role of foreign investors on investor sentiment formation seems to exist in the Korean stock market, it needs to examine the moderate or incremental effect of foreign investors on the stock price crash risk which is due to investor sentiment. The analysis results using Korea Stock Exchanges - listed firms for the period of 2011-2019 show the increased future stock price crash risk which is attributable to high investor sentiment is mitigated for firms with the high foreign ownership, indicating the moderate effect. This study expands the literature on the foreign investors' behavior in the Korean stock market, by showing foreign investors are not involved in firm-specific investor sentiment, which improves market's efficiency in the Korean stock market. Also, the paper is valuable to the academic and practice field in that the findings shed light on the foreign investors' mitigating role in stock price crashes in the behavioral finance perspective.

Competitive intelligence in Korean Ramen Market using Text Mining and Sentiment Analysis

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.155-166
    • /
    • 2018
  • These days, online media, such as blogospheres, online communities, and social networking sites, provides the uncountable user-generated content (UGC) to discover market intelligence and business insight with. The business has been interested in consumers, and constantly requires the approach to identify consumers' opinions and competitive advantage in the competing market. Analyzing consumers' opinion about oneself and rivals can help decision makers to gain in-depth and fine-grained understanding on the human and social behavioral dynamics underlying the competition. In order to accomplish the comparison study for rival products and companies, we attempted to do competitive analysis using text mining with online UGC for two popular and competing ramens, a market leader and a market follower, in the Korean instant noodle market. Furthermore, to overcome the lack of the Korean sentiment lexicon, we developed the domain specific sentiment dictionary of Korean texts. We gathered 19,386 pieces of blogs and forum messages, developed the Korean sentiment dictionary, and defined the taxonomy for categorization. In the context of our study, we employed sentiment analysis to present consumers' opinion and statistical analysis to demonstrate the differences between the competitors. Our results show that the sentiment portrayed by the text mining clearly differentiate the two rival noodles and convincingly confirm that one is a market leader and the other is a follower. In this regard, we expect this comparison can help business decision makers to understand rich in-depth competitive intelligence hidden in the social media.

Search-based Sentiment and Stock Market Reactions: An Empirical Evidence in Vietnam

  • Nguyen, Du D.;Pham, Minh C.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.4
    • /
    • pp.45-56
    • /
    • 2018
  • The paper aims to examine relationships between search-based sentiment and stock market reactions in Vietnam. This study constructs an internet search-based measure of sentiment and examines its relationship with Vietnamese stock market returns. The sentiment index is derived from Google Trends' Search Volume Index of financial and economic terms that Vietnamese searched from January 2011 to June 2018. Consistent with prediction from sentiment theories, the study documents significant short-term reversals across three major stock indices. The difference from previous literature is that Vietnam stock market absorbs the contemporaneous decline slower while the subsequent rebound happens within a day. The results of the study suggest that the sentiment-induced effect is mainly driven by pessimism. On the other hand, optimistic investors seem to delay in taking their investment action until the market corrects. The study proposes a unified explanation for our findings based on the overreaction hypothesis of the bearish group and the strategic delay of the optimistic group. The findings of the study contribute to the behavioral finance strand that studies the role of sentiment in emerging financial markets, where noise traders and limits to arbitrage are more obvious. They also encourage the continuous application of search data to explore other investor behaviors in securities markets.

Investor Sentiment Timing Ability of Mutual Fund Managers: A Comparative Study and Some Extensions

  • CHUNHACHINDA, Pornchai;WATTANATORN, Woraphon;PADUNGSAKSAWASDI, Chaiyuth
    • Journal of Distribution Science
    • /
    • v.20 no.9
    • /
    • pp.83-95
    • /
    • 2022
  • Purpose: This study aims to explore an ability to time market-wide investor sentiment of mutual fund managers in an emerging market. Research design, data, and methodology: Based on data of Thai mutual fund market over the period of 2000-2019, our sample includes 283 equity funds, consisting of 204 bank-related funds and 79 nonbank-related funds. We perform our regression analyses at the aggregate and portfolio levels. Results: Under the non-normal distribution of return, we find different behaviors between the best- and worst-performing funds in an ability to time market-wide investor sentiment in Thailand, which is dissimilar to the findings in the U.S. Bottom fund managers act as sentiment hedgers, who decrease (increase) an exposure of investment portfolios when the investor sentiment is high (low). Oppositely, top fund managers are likely to chase investor sentiment. Conclusion: We find that only the worst-performing fund managers, especially for bank-related funds are able to time the market-wide investor sentiment. An advantage of gaining information from their bank's clients is a key success. A competition in the mutual fund industry, an ability to predict fundamentals, and financial literacy are possible reasons to explain the main findings found in this study.

A Study on Efficient Market Hypothesis to Predict Exchange Rate Trends Using Sentiment Analysis of Twitter Data

  • Komariah, Kokoy Siti;Machbub, Carmadi;Prihatmanto, Ary S.;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1107-1115
    • /
    • 2016
  • Efficient Market Hypothesis (EMH), states that at any point in time in a liquid market security prices fully reflect all available information. This paper presents a study of proving the hypothesis through daily Twitter sentiments using the hybrid approach of the lexicon-based approach and the naïve Bayes classifier. In this research we analyze the currency exchange rate movement of Indonesia Rupiah vs US dollar as a way of testing the Efficient Market Hypothesis. In order to find a correlation between the prediction sentiments from Twitter data and the actual currency exchange rate trends we collect Twitter data every day and compute the overall sentiment to label them as positive or negative. Experimental results have shown 69% correct prediction of sentiment analysis and 65.7% correlation with positive sentiments. This implies that EMH is semi-strong Efficient Market Hypothesis, and that public information provide by Twitter sentiment correlate with changes in the exchange market trends.

Sensitivity of abacus and Chasdaq in the Chinese stock market through analysis of Weibo sentiment related to Corona-19 (코로나-19관련 웨이보 정서 분석을 통한 중국 주식시장의 주판 및 차스닥의 민감도 예측 기법)

  • Li, Jiaqi;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Investor mood from social media is gaining increasing attention for leading a price movement in stock market. Based on the behavioral finance theory, this study argues that sentiment extracted from social media using big data technique can predict a real-time (short-run) price momentum in Chinese stock market. Collecting Sina Weibo posts that related to COVID-19 using keyword method, a daily influential weighted sentiment factors is extracted from the sizable raw data of over 2 millions of posts. We examine one supervised and 4 unsupervised sentiment analysis model, and use the best performed word-frequency and BiLSTM mdoel. The test result shows a similar movement between stock price change and sentiment factor. It indicates that public mood extracted from social media can in some extent represent the investors' sentiment and make a difference in stock market fluctuation when people are concentrating on a special events that can cause effect on the stock market.

News based Stock Market Sentiment Lexicon Acquisition Using Word2Vec (Word2Vec을 활용한 뉴스 기반 주가지수 방향성 예측용 감성 사전 구축)

  • Kim, Daye;Lee, Youngin
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Stock market prediction has been long dream for researchers as well as the public. Forecasting ever-changing stock market, though, proved a Herculean task. This study proposes a novel stock market sentiment lexicon acquisition system that can predict the growth (or decline) of stock market index, based on economic news. For this purpose, we have collected 3-year's economic news from January 2015 to December 2017 and adopted Word2Vec model to consider the context of words. To evaluate the result, we performed sentiment analysis to collected news data with the automated constructed lexicon and compared with closings of the KOSPI (Korea Composite Stock Price Index), the South Korean stock market index based on economic news.