The exchange between buyers and sellers in the industrial market is changing from short-term to long-term relationships. Long-term relationships are governed mainly by formal contracts or informal agreements, but many scholars are now asserting that controlling relationship by using formal contracts under environmental dynamism is inappropriate. In this case, partners will depend on each other's flexibility or interdependence. The former, flexibility, provides a general frame of reference, order, and standards against which to guide and assess appropriate behavior in dynamic and ambiguous situations, thus motivating the value-oriented performance goals shared between partners. It is based on social sacrifices, which can potentially minimize any opportunistic behaviors. The later, interdependence, means that each firm possesses a high level of dependence in an dynamic channel relationship. When interdependence is high in magnitude and symmetric, each firm enjoys a high level of power and the bonds between the firms should be reasonably strong. Strong shared power is likely to promote commitment because of the common interests, attention, and support found in such channel relationships. This study deals with environmental dynamism in high-tech industry. Firms in the high-tech industry regard it as a key success factor to successfully cope with environmental changes. However, due to the lack of studies dealing with environmental dynamism and supply chain commitment in the high-tech industry, it is very difficult to find effective strategies to cope with them. This paper presents the results of an empirical study on the relationship between environmental dynamism and supply chain commitment in the high-tech industry. We examined the effects of consumer, competitor, and technological dynamism on supply chain commitment. Additionally, we examined the moderating effects of flexibility and dependence of supply chains. This study was confined to the type of high-tech industry which has the characteristics of rapid technology change and short product lifecycle. Flexibility among the firms of this industry, having the characteristic of hard and fast growth, is more important here than among any other industry. Thus, a variety of environmental dynamism can affect a supply chain relationship. The industries targeted industries were electronic parts, metal product, computer, electric machine, automobile, and medical precision manufacturing industries. Data was collected as follows. During the survey, the researchers managed to obtain the list of parts suppliers of 2 companies, N and L, with an international competitiveness in the mobile phone manufacturing industry; and of the suppliers in a business relationship with S company, a semiconductor manufacturing company. They were asked to respond to the survey via telephone and e-mail. During the two month period of February-April 2006, we were able to collect data from 44 companies. The respondents were restricted to direct dealing authorities and subcontractor company (the supplier) staff with at least three months of dealing experience with a manufacture (an industrial material buyer). The measurement validation procedures included scale reliability; discriminant and convergent validity were used to validate measures. Also, the reliability measurements traditionally employed, such as the Cronbach's alpha, were used. All the reliabilities were greater than.70. A series of exploratory factor analyses was conducted. We conducted confirmatory factor analyses to assess the validity of our measurements. A series of chi-square difference tests were conducted so that the discriminant validity could be ensured. For each pair, we estimated two models-an unconstrained model and a constrained model-and compared the two model fits. All these tests supported discriminant validity. Also, all items loaded significantly on their respective constructs, providing support for convergent validity. We then examined composite reliability and average variance extracted (AVE). The composite reliability of each construct was greater than.70. The AVE of each construct was greater than.50. According to the multiple regression analysis, customer dynamism had a negative effect and competitor dynamism had a positive effect on a supplier's commitment. In addition, flexibility and dependence had significant moderating effects on customer and competitor dynamism. On the other hand, all hypotheses about technological dynamism had no significant effects on commitment. In other words, technological dynamism had no direct effect on supplier's commitment and was not moderated by the flexibility and dependence of the supply chain. This study makes its contribution in the point of view that this is a rare study on environmental dynamism and supply chain commitment in the field of high-tech industry. Especially, this study verified the effects of three sectors of environmental dynamism on supplier's commitment. Also, it empirically tested how the effects were moderated by flexibility and dependence. The results showed that flexibility and interdependence had a role to strengthen supplier's commitment under environmental dynamism in high-tech industry. Thus relationship managers in high-tech industry should make supply chain relationship flexible and interdependent. The limitations of the study are as follows; First, about the research setting, the study was conducted with high-tech industry, in which the direction of the change in the power balance of supply chain dyads is usually determined by manufacturers. So we have a difficulty with generalization. We need to control the power structure between partners in a future study. Secondly, about flexibility, we treated it throughout the paper as positive, but it can also be negative, i.e. violating an agreement or moving, but in the wrong direction, etc. Therefore we need to investigate the multi-dimensionality of flexibility in future research.
Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.
Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
Journal of Intelligence and Information Systems
/
v.24
no.4
/
pp.219-240
/
2018
Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.
1. Introduction Today Internet is recognized as an important way for the transaction of products and services. According to the data surveyed by the National Statistical Office, the on-line transaction in 2007 for a year, 15.7656 trillion, shows a 17.1%(2.3060 trillion won) increase over last year, of these, the amount of B2C has been increased 12.0%(10.2258 trillion won). Like this, because the entry barrier of on-line market of Korea is low, many retailers could easily enter into the market. So the bigger its scale is, but on the other hand, the tougher its competition is. Particularly due to the Internet and innovation of IT, the existing market has been changed into the perfect competitive market(Srinivasan, Rolph & Kishore, 2002). In the early years of on-line business, they think that the main reason for success is a moderate price, they are awakened to its importance of on-line service quality with tough competition. If it's not sure whether customers can be provided with what they want, they can use the Web sites, perhaps they can trust their products that had been already bought or not, they have a doubt its viability(Parasuraman, Zeithaml & Malhotra, 2005). Customers can directly reserve and issue their air tickets irrespective of place and time at the Web sites of travel agencies or airlines, but its empirical studies about these Web sites for reserving and issuing air tickets are insufficient. Therefore this study goes on for following specific objects. First object is to measure service quality and service recovery of Web sites for reserving and issuing air tickets. Second is to look into whether above on-line service quality and on-line service recovery have an impact on overall service quality. Third is to seek for the relation with overall service quality and customer satisfaction, then this customer satisfaction and loyalty intention. 2. Theoretical Background 2.1 On-line Service Quality Barnes & Vidgen(2000; 2001a; 2001b; 2002) had invented the tool to measure Web sites' quality four times(called WebQual). The WebQual 1.0, Step one invented a measuring item for information quality based on QFD, and this had been verified by students of UK business school. The Web Qual 2.0, Step two invented for interaction quality, and had been judged by customers of on-line bookshop. The WebQual 3.0, Step three invented by consolidating the WebQual 1.0 for information quality and the WebQual2.0 for interactionquality. It includes 3-quality-dimension, information quality, interaction quality, site design, and had been assessed and confirmed by auction sites(e-bay, Amazon, QXL). Furtheron, through the former empirical studies, the authors changed sites quality into usability by judging that usability is a concept how customers interact with or perceive Web sites and It is used widely for accessing Web sites. By this process, WebQual 4.0 was invented, and is consist of 3-quality-dimension; information quality, interaction quality, usability, 22 items. However, because WebQual 4.0 is focusing on technical part, it's usable at the Website's design part, on the other hand, it's not usable at the Web site's pleasant experience part. Parasuraman, Zeithaml & Malhorta(2002; 2005) had invented the measure for measuring on-line service quality in 2002 and 2005. The study in 2002 divided on-line service quality into 5 dimensions. But these were not well-organized, so there needed to be studied again totally. So Parasuraman, Zeithaml & Malhorta(2005) re-worked out the study about on-line service quality measure base on 2002's study and invented E-S-QUAL. After they invented preliminary measure for on-line service quality, they made up a question for customers who had purchased at amazon.com and walmart.com and reassessed this measure. And they perfected an invention of E-S-QUAL consists of 4 dimensions, 22 items of efficiency, system availability, fulfillment, privacy. Efficiency measures assess to sites and usability and others, system availability measures accurate technical function of sites and others, fulfillment measures promptness of delivering products and sufficient goods and others and privacy measures the degree of protection of data about their customers and so on. 2.2 Service Recovery Service industries tend to minimize the losses by coping with service failure promptly. This responses of service providers to service failure mean service recovery(Kelly & Davis, 1994). Bitner(1990) went on his study from customers' view about service providers' behavior for customers to recognize their satisfaction/dissatisfaction at service point. According to them, to manage service failure successfully, exact recognition of service problem, an apology, sufficient description about service failure and some tangible compensation are important. Parasuraman, Zeithaml & Malhorta(2005) approached the service recovery from how to measure, rather than how to manage, and moved to on-line market not to off-line, then invented E-RecS-QUAL which is a measuring tool about on-line service recovery. 2.3 Customer Satisfaction The definition of customer satisfaction can be divided into two points of view. First, they approached customer satisfaction from outcome of comsumer. Howard & Sheth(1969) defined satisfaction as 'a cognitive condition feeling being rewarded properly or improperly for their sacrifice.' and Westbrook & Reilly(1983) also defined customer satisfaction/dissatisfaction as 'a psychological reaction to the behavior pattern of shopping and purchasing, the display condition of retail store, outcome of purchased goods and service as well as whole market.' Second, they approached customer satisfaction from process. Engel & Blackwell(1982) defined satisfaction as 'an assessment of a consistency in chosen alternative proposal and their belief they had with them.' Tse & Wilton(1988) defined customer satisfaction as 'a customers' reaction to discordance between advance expectation and ex post facto outcome.' That is, this point of view that customer satisfaction is process is the important factor that comparing and assessing process what they expect and outcome of consumer. Unlike outcome-oriented approach, process-oriented approach has many advantages. As process-oriented approach deals with customers' whole expenditure experience, it checks up main process by measuring one by one each factor which is essential role at each step. And this approach enables us to check perceptual/psychological process formed customer satisfaction. Because of these advantages, now many studies are adopting this process-oriented approach(Yi, 1995). 2.4 Loyalty Intention Loyalty has been studied by dividing into behavioral approaches, attitudinal approaches and complex approaches(Dekimpe et al., 1997). In the early years of study, they defined loyalty focusing on behavioral concept, behavioral approaches regard customer loyalty as "a tendency to purchase periodically within a certain period of time at specific retail store." But the loyalty of behavioral approaches focuses on only outcome of customer behavior, so there are someone to point the limits that customers' decision-making situation or process were neglected(Enis & Paul, 1970; Raj, 1982; Lee, 2002). So the attitudinal approaches were suggested. The attitudinal approaches consider loyalty contains all the cognitive, emotional, voluntary factors(Oliver, 1997), define the customer loyalty as "friendly behaviors for specific retail stores." However these attitudinal approaches can explain that how the customer loyalty form and change, but cannot say positively whether it is moved to real purchasing in the future or not. This is a kind of shortcoming(Oh, 1995). 3. Research Design 3.1 Research Model Based on the objects of this study, the research model derived is
. 3.2 Hypotheses 3.2.1 The Hypothesis of On-line Service Quality and Overall Service Quality The relation between on-line service quality and overall service quality I-1. Efficiency of on-line service quality may have a significant effect on overall service quality. I-2. System availability of on-line service quality may have a significant effect on overall service quality. I-3. Fulfillment of on-line service quality may have a significant effect on overall service quality. I-4. Privacy of on-line service quality may have a significant effect on overall service quality. 3.2.2 The Hypothesis of On-line Service Recovery and Overall Service Quality The relation between on-line service recovery and overall service quality II-1. Responsiveness of on-line service recovery may have a significant effect on overall service quality. II-2. Compensation of on-line service recovery may have a significant effect on overall service quality. II-3. Contact of on-line service recovery may have a significant effect on overall service quality. 3.2.3 The Hypothesis of Overall Service Quality and Customer Satisfaction The relation between overall service quality and customer satisfaction III-1. Overall service quality may have a significant effect on customer satisfaction. 3.2.4 The Hypothesis of Customer Satisfaction and Loyalty Intention The relation between customer satisfaction and loyalty intention IV-1. Customer satisfaction may have a significant effect on loyalty intention. 3.2.5 The Hypothesis of a Mediation Variable Wolfinbarger & Gilly(2003) and Parasuraman, Zeithaml & Malhotra(2005) had made clear that each dimension of service quality has a significant effect on overall service quality. Add to this, the authors analyzed empirically that each dimension of on-line service quality has a positive effect on customer satisfaction. With that viewpoint, this study would examine if overall service quality mediates between on-line service quality and each dimension of customer satisfaction, keeping on looking into the relation between on-line service quality and overall service quality, overall service quality and customer satisfaction. And as this study understands that each dimension of on-line service recovery also has an effect on overall service quality, this would examine if overall service quality also mediates between on-line service recovery and each dimension of customer satisfaction. Therefore these hypotheses followed are set up to examine if overall service quality plays its role as the mediation variable. The relation between on-line service quality and customer satisfaction V-1. Overall service quality may mediate the effects of efficiency of on-line service quality on customer satisfaction. V-2. Overall service quality may mediate the effects of system availability of on-line service quality on customer satisfaction. V-3. Overall service quality may mediate the effects of fulfillment of on-line service quality on customer satisfaction. V-4. Overall service quality may mediate the effects of privacy of on-line service quality on customer satisfaction. The relation between on-line service recovery and customer satisfaction VI-1. Overall service quality may mediate the effects of responsiveness of on-line service recovery on customer satisfaction. VI-2. Overall service quality may mediate the effects of compensation of on-line service recovery on customer satisfaction. VI-3. Overall service quality may mediate the effects of contact of on-line service recovery on customer satisfaction. 4. Empirical Analysis 4.1 Research design and the characters of data This empirical study aimed at customers who ever purchased air ticket at the Web sites for reservation and issue. Total 430 questionnaires were distributed, and 400 were collected. After surveying with the final questionnaire, the frequency test was performed about variables of sex, age which is demographic factors for analyzing general characters of sample data. Sex of data is consist of 146 of male(42.7%) and 196 of female(57.3%), so portion of female is a little higher. Age is composed of 11 of 10s(3.2%), 199 of 20s(58.2%), 105 of 30s(30.7%), 22 of 40s(6.4%), 5 of 50s(1.5%). The reason that portions of 20s and 30s are higher can be supposed that they use the Internet frequently and purchase air ticket directly. 4.2 Assessment of measuring scales This study used the internal consistency analysis to measure reliability, and then used the Cronbach'$\alpha$ to assess this. As a result of reliability test, Cronbach'$\alpha$ value of every component shows more than 0.6, it is found that reliance of the measured variables are ensured. After reliability test, the explorative factor analysis was performed. the factor sampling was performed by the Principal Component Analysis(PCA), the factor rotation was performed by the Varimax which is good for verifying mutual independence between factors. By the result of the initial factor analysis, items blocking construct validity were removed, and the result of the final factor analysis performed for verifying construct validity is followed above. 4.3 Hypothesis Testing 4.3.1 Hypothesis Testing by the Regression Analysis(SPSS) 4.3.2 Analysis of Mediation Effect To verify mediation effect of overall service quality of and , this study used the phased analysis method proposed by Baron & Kenny(1986) generally used. As
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient $\beta$eta : efficiency=.164, system availability=.074, fulfillment=.108, privacy=.107) is smaller than its estimate ability at Step 2(Standardized coefficient $\beta$eta : efficiency=.409, system availability=.227, fulfillment=.386, privacy=.237), so it was proved that overall service quality played a role as the partial mediation between on-line service quality and satisfaction. As
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient $\beta$eta : responsiveness=.164, compensation=.117, contact=.113) is smaller than its estimate ability at Step 2(Standardized coefficient $\beta$eta : responsiveness=.409, compensation=.386, contact=.237), so it was proved that overall service quality played a role as the partial mediation between on-line service recovery and satisfaction. Verified results on the basis of empirical analysis are followed. First, as the result of , it shows that all were chosen, so on-line service quality has a positive effect on overall service quality. Especially fulfillment of overall service quality has the most effect, and then efficiency, system availability, privacy in order. Second, as the result of , it shows that all were chosen, so on-line service recovery has a positive effect on overall service quality. Especially responsiveness of overall service quality has the most effect, and then contact, compensation in order. Third, as the result of and , it shows that and all were chosen, so overall service quality has a positive effect on customer satisfaction, customer satisfaction has a positive effect on loyalty intention. Fourth, as the result of and , it shows that and all were chosen, so overall service quality plays a role as the partial mediation between on-line service quality and customer satisfaction, on-line service recovery and customer satisfaction. 5. Conclusion This study measured and analyzed service quality and service recovery of the Web sites that customers made a reservation and issued their air tickets, and by improving customer satisfaction through the result, this study put its final goal to grope how to keep loyalty customers. On the basis of the result of empirical analysis, suggestion points of this study are followed. First, this study regarded E-S-QUAL that measures on-line service quality and E-RecS-QUAL that measures on-line service recovery as variables, so it overcame the limit of existing studies that used modified SERVQUAL to measure service quality of the Web sites. Second, it shows that fulfillment and efficiency of on-line service quality have the most significant effect on overall service quality. Therefore the Web sites of reserving and issuing air tickets should try harder to elevate efficiency and fulfillment. Third, privacy of on-line service quality has the least significant effect on overall service quality, but this may be caused by un-assurance of customers whether the Web sites protect safely their confidential information or not. So they need to notify customers of this fact clearly. Fourth, there are many cases that customers don't recognize the importance of on-line service recovery, but if they would think that On-line service recovery has an effect on customer satisfaction and loyalty intention, as its importance is very significant they should prepare for that. Fifth, because overall service quality has a positive effect on customer satisfaction and loyalty intention, they should try harder to elevate service quality and service recovery of the Web sites of reserving and issuing air tickets to maximize customer satisfaction and to secure loyalty customers. Sixth, it is found that overall service quality plays a role as the partial mediation, but now there are rarely existing studies about this, so there need to be more studies about this.
The purpose of this study was to categorize the gap between coffee shop 'importance' (as perceived by customers before patronizing the coffee shop) and 'satisfaction' (perception of customers after patronizing the coffee shop) as positive or negative and to analyze the effect of these gaps on purchasing behavior. To do this, I used the gap between importance and satisfaction regarding the choice of a coffee shop as the explanatory variable and performed an empirical analysis of the direction and size of the effect of the gap on purchasing behavior (overall satisfaction, willingness-to-revisit) by applying the Ordered Probit Model (OPM). A previous study that used IPA to evaluate the effects of gaps estimated the direction and size of a quadrant but failed to analyze the effect of gaps on customers. In this study, I evaluated the effects of positive and negative gaps on customer satisfaction and willingness-to-revisit. Using OPM, I quantified the effect of positive and negative gaps on overall customer satisfaction and willingness-to-revisit. Per-head expenditure, frequency of visits, and coffee-purchasing place had the most positive effects on overall customer satisfaction. Frequency of visits, followed by per-head expenditure and then coffee-purchasing place, had the most positive impact on willingness-to-visit. Thus per-head expenditure and frequency of visits had the greatest positive effects on overall satisfaction and willingness-to-revisit. This finding implies that the higher the actual satisfaction (gap) of customers who spend KRW5,000 or more once or more per week at coffee shops is, the higher their overall satisfaction and willingness-to-revisit are. Despite the fact that economical efficiency had a significant effect on overall satisfaction and willingness-to-revisit, college and university students still use coffee shops and are willing to spend KRW5,000 because they do not only purchase coffee as a product itself, but use the coffee shop for other activities, such as working, meeting friends, or relaxing. College and university students also access the Internet in coffee shops via personal laptops, watch movies, and study; thus, coffee shops should provide their customers with the appropriate facilities and services. The fact that a positive gap for coffee shop brand had a positive effect on willingness-to-revisit implies that the higher the level of customer satisfaction, the greater the willingness-to-revisit. A negative gap for this factor, on the other hand, implies that the lower the level of customer satisfaction, the lower the willingness-to-revisit. Thus, the brand factor has a comparatively greater effect on satisfaction than the other factors evaluated in this study. Given that the domestic coffee culture is becoming more upscale and college/university students are sensitive to this trend, students are attentive to brands. In most upscale coffee shops in Korea, the outer wall is built out of glass that can be opened, the interiors are exotic with an open kitchen. These upscale coffee shops function as landmarks and match the taste of college/university students. Coffee shops in Korea have become a cultural brand. To make customers feel that coffee shops are upscale, good quality establishments and measures to provide better services in terms of brand factor should be instituted. The intensified competition among coffee shop brands in Korea as a result of the booming industry indicates that provision of additional services is needed to differentiate competitors. These customers can also use a scanner free of charge. Another strategy that can be used to boost brands could be to provide and operate a seminar room for seminars and group study. If coffee shops adopt these types of strategies, college/university students would be more likely to consider the expenses they incur worthwhile and, subsequently, they would be more likely to be satisfied with the brands of these coffee shops, with an associated increase in their willingness-to-revisit. Gender and study year had the most negative effects on overall satisfaction and willingness-to-revisit. Female students were more likely to be satisfied and be willing to return than male students, and third and fourth-year students were more likely to be satisfied and willing-to-return than first or second-year students. Students who drink coffee, read books, and use laptops alone at coffee shops are easily noticeable. High-grade students tend to visit coffee shops alone in order to use their time efficiently for self-development and to find jobs. The economical efficiency factor had the greatest effect on overall satisfaction and willingness-to-revisit in terms of a positive gap. The higher the actual satisfaction (gap) of students with the price of the coffee, the greater their overall satisfaction and willingness-to-revisit. Economical efficiency with a negative gap had a negative effect on willingness-to-revisit, which implies that a less negative gap will result in a greater willingness-to-revisit. Amid worsening market conditions, coffee shops located around colleges/universities are using strategies, such as a point or membership card, strategic alliances with credit-card companies, development of a set menu or seasonal menu, and free coffee-shot services to increase their competitive edge. Product power also had a negative effect in terms of a negative gap, which indicates that a higher negative gap will result in a lower willingness-to-revisit. Because there are many more customers that enjoy coffee in this decade, as compared to previous decades, the new generation of customers, namely college/university students, want various menu items in addition to coffee, and coffee shops should, therefore, add side menu items, such as waffles, rice cakes, cakes, sandwiches, and salads. For example, Starbucks Korea is making efforts to enhance product power by selling rice cakes flavored in strawberry, wormwood, and pumpkin, and providing coffee or cream free of charge. In summary, coffee shops should focus on increasing their economical efficiency, brand, and product power to enhance the satisfaction of college/university students. Because shops adjacent to colleges or universities enjoy a locational advantage, providing differentiated services in terms of economical efficiency, brand, and product power, is likely to increase customer satisfaction and return visits. Coffee shop brands should, therefore, be innovative and embrace change to meet their customers' desires. Because this study only targeted college/university students in Seoul, comparative studies targeting diverse regions and age groups are required to generalize the findings and recommendations of this study.
This paper describes a collaborative project between academia and industry which focused on improving the marketing and product development strategies for two private label apparel brands of a large regional department store chain in the southeastern United States. The goal of the project was to revitalize product lines of the two brands by incorporating student ideas for new solutions, thereby giving the students practical experience with a real-life industry situation. There were a number of key players involved in the project. A privately-owned department store chain based in the southeastern United States which was seeking an academic partner had recognized a need to update two existing private label brands. They targeted middle-aged consumers looking for casual, moderately priced merchandise. The company was seeking to change direction with both packaging and presentation, and possibly product design. The branding and product development divisions of the company contacted professors in an academic department of a large southeastern state university. Two of the professors agreed that the task would be a good fit for their classes - one was a junior-level Intermediate Brand Management class; the other was a senior-level Fashion Product Development class. The professors felt that by working collaboratively on the project, students would be exposed to a real world scenario, within the security of an academic learning environment. Collaboration within an interdisciplinary team has the advantage of providing experiences and resources beyond the capabilities of a single student and adds "brainpower" to problem-solving processes (Lowman 2000). This goal of improving the capabilities of students directed the instructors in each class to form interdisciplinary teams between the Branding and Product Development classes. In addition, many universities are employing industry partnerships in research and teaching, where collaboration within temporal (semester) and physical (classroom/lab) constraints help to increase students' knowledge and experience of a real-world situation. At the University of Tennessee, the Center of Industrial Services and UT-Knoxville's College of Engineering worked with a company to develop design improvements in its U.S. operations. In this study, Because should be lower case b with a private label retail brand, Wickett, Gaskill and Damhorst's (1999) revised Retail Apparel Product Development Model was used by the product development and brand management teams. This framework was chosen because it addresses apparel product development from the concept to the retail stage. Two classes were involved in this project: a junior level Brand Management class and a senior level Fashion Product Development class. Seven teams were formed which included four students from Brand Management and two students from Product Development. The classes were taught the same semester, but not at the same time. At the beginning of the semester, each class was introduced to the industry partner and given the problem. Half the teams were assigned to the men's brand and half to the women's brand. The teams were responsible for devising approaches to the problem, formulating a timeline for their work, staying in touch with industry representatives and making sure that each member of the team contributed in a positive way. The objective for the teams was to plan, develop, and present a product line using merchandising processes (following the Wickett, Gaskill and Damhorst model) and develop new branding strategies for the proposed lines. The teams performed trend, color, fabrication and target market research; developed sketches for a line; edited the sketches and presented their line plans; wrote specifications; fitted prototypes on fit models, and developed final production samples for presentation to industry. The branding students developed a SWOT analysis, a Brand Measurement report, a mind-map for the brands and a fully integrated Marketing Report which was presented alongside the ideas for the new lines. In future if the opportunity arises to work in this collaborative way with an existing company who wishes to look both at branding and product development strategies, classes will be scheduled at the same time so that students have more time to meet and discuss timelines and assigned tasks. As it was, student groups had to meet outside of each class time and this proved to be a challenging though not uncommon part of teamwork (Pfaff and Huddleston, 2003). Although the logistics of this exercise were time-consuming to set up and administer, professors felt that the benefits to students were multiple. The most important benefit, according to student feedback from both classes, was the opportunity to work with industry professionals, follow their process, and see the results of their work evaluated by the people who made the decisions at the company level. Faculty members were grateful to have a "real-world" case to work with in the classroom to provide focus. Creative ideas and strategies were traded as plans were made, extending and strengthening the departmental links be tween the branding and product development areas. By working not only with students coming from a different knowledge base, but also having to keep in contact with the industry partner and follow the framework and timeline of industry practice, student teams were challenged to produce excellent and innovative work under new circumstances. Working on the product development and branding for "real-life" brands that are struggling gave students an opportunity to see how closely their coursework ties in with the real-world and how creativity, collaboration and flexibility are necessary components of both the design and business aspects of company operations. Industry personnel were impressed by (a) the level and depth of knowledge and execution in the student projects, and (b) the creativity of new ideas for the brands.
Data-drive analytics techniques have been recently applied to public surveys. Instead of simply gathering survey results or expert opinions to research the preference for a recently launched product, enterprises need a way to collect and analyze various types of online data and then accurately figure out customer preferences. In the main concept of existing data-based survey methods, the sentiment lexicon for a particular domain is first constructed by domain experts who usually judge the positive, neutral, or negative meanings of the frequently used words from the collected text documents. In order to research the preference for a particular product, the existing approach collects (1) review posts, which are related to the product, from several product review web sites; (2) extracts sentences (or phrases) in the collection after the pre-processing step such as stemming and removal of stop words is performed; (3) classifies the polarity (either positive or negative sense) of each sentence (or phrase) based on the sentiment lexicon; and (4) estimates the positive and negative ratios of the product by dividing the total numbers of the positive and negative sentences (or phrases) by the total number of the sentences (or phrases) in the collection. Furthermore, the existing approach automatically finds important sentences (or phrases) including the positive and negative meaning to/against the product. As a motivated example, given a product like Sonata made by Hyundai Motors, customers often want to see the summary note including what positive points are in the 'car design' aspect as well as what negative points are in thesame aspect. They also want to gain more useful information regarding other aspects such as 'car quality', 'car performance', and 'car service.' Such an information will enable customers to make good choice when they attempt to purchase brand-new vehicles. In addition, automobile makers will be able to figure out the preference and positive/negative points for new models on market. In the near future, the weak points of the models will be improved by the sentiment analysis. For this, the existing approach computes the sentiment score of each sentence (or phrase) and then selects top-k sentences (or phrases) with the highest positive and negative scores. However, the existing approach has several shortcomings and is limited to apply to real applications. The main disadvantages of the existing approach is as follows: (1) The main aspects (e.g., car design, quality, performance, and service) to a product (e.g., Hyundai Sonata) are not considered. Through the sentiment analysis without considering aspects, as a result, the summary note including the positive and negative ratios of the product and top-k sentences (or phrases) with the highest sentiment scores in the entire corpus is just reported to customers and car makers. This approach is not enough and main aspects of the target product need to be considered in the sentiment analysis. (2) In general, since the same word has different meanings across different domains, the sentiment lexicon which is proper to each domain needs to be constructed. The efficient way to construct the sentiment lexicon per domain is required because the sentiment lexicon construction is labor intensive and time consuming. To address the above problems, in this article, we propose a novel product reputation mining algorithm that (1) extracts topics hidden in review documents written by customers; (2) mines main aspects based on the extracted topics; (3) measures the positive and negative ratios of the product using the aspects; and (4) presents the digest in which a few important sentences with the positive and negative meanings are listed in each aspect. Unlike the existing approach, using hidden topics makes experts construct the sentimental lexicon easily and quickly. Furthermore, reinforcing topic semantics, we can improve the accuracy of the product reputation mining algorithms more largely than that of the existing approach. In the experiments, we collected large review documents to the domestic vehicles such as K5, SM5, and Avante; measured the positive and negative ratios of the three cars; showed top-k positive and negative summaries per aspect; and conducted statistical analysis. Our experimental results clearly show the effectiveness of the proposed method, compared with the existing method.
Marbling (intramuscular fat) is an important factor in determining meat quality in Korean beef market. A grain based finishing system for improving marbling leads to inefficient meat production due to an excessive fat production. Identification of intramuscular fat-specific gene might be achieved more targeted meat production through alternative genetic improvement program such as marker assisted selection (MAS). We carried out ddRT-PCR in 12 and 27 month old Hanwoo steers and detected 300 bp PCR product of the inducible cAMP early repressor (ICER) gene, showing highly gene expression in 27 months old. A 1.5 kb sequence was re-sequenced using primer designed base on the Hanwoo EST sequence. We then predicted the open reading frame (ORF) of ICER gene in ORF finder web program. Tissue distribution of ICER gene expression was analysed in eight Hanwoo tissue using realtime PCR analysis. The highest ICER gene expression showed in Small intestine followed by Longissimus dorsi. Interestingly, the ICER gene expressed 2.5 time higher in longissimus dorsi than in same muscle type, Rump. For gene expression analysis in high- and low marbled individuals, we selected 4 and 3 animal based on the muscle crude fat contents (high is 17-32%, low is 6-7% of crude fat contents). The ICER gene expression was analysed using ANOVA model. Marbling (muscle crude fat contents) was affected by ICER gene (P=0.012). Particularly, the ICER gene expression was 4 times higher in high group (n=4) than low group (n=3). Therefore, ICER gene might be a functional candidate gene related to marbling in Hanwoo.
This study is to confirm the core factors of innovative capabilities and technological entrepreneurship affecting the performance of technology management and business management of small and medium-sized enterprises (SMEs). Through the consideration about the complex natures of technological innovation affecting by multidimensional factors, this study designs the research model that innovative capabilities, the performances of technology and business management are arranged in accordance with the innovation process; input-output-outcome. To meet this research purpose, the hypothesis are set up based on the previous research studies and the research samples are selected from members of the Innovative Business (INNO-BIZ) Association, located in Seoul and Geyonggi province. As a result of regression analysis to the responses gathered from 360 firms, the performance of business management is influenced positively by the technology superiority, market growth and business profitability which are the dominant factors of performance of technology management. In addition, three sub-variables of innovative capabilities such as R&D, strategic planning and learning capability, have positive effects on both the managerial performances. Innovativeness and progressiveness of technological entrepreneurship affect both the performances positively. Moreover, the co-relation between technological entrepreneurship of an innovation leader and innovative capabilities of organizational members are identified. Lastly, technological entrepreneurship has the mediating effect on the path of leading innovative capabilities to the managerial performances. In conclusion, the research results imply that technological innovation-type firms should periodically evaluate the performance of technology management which are the output of technological innovations and the reinvestment for ultimate business success. And improving and developing innovative capabilities and technological entrepreneurship is required to continuously and consistently investing and supporting resources on technological innovations at the firm-and government-level. It is considered that these are the crucial methods for securing the technologically competitive advantage of SMEs with less resources and narrow innovation range.
Big data is creating in a wide variety of fields such as medical care, manufacturing, logistics, sales site, SNS, and the dataset characteristics are also diverse. In order to secure the competitiveness of companies, it is necessary to improve decision-making capacity using a classification algorithm. However, most of them do not have sufficient knowledge on what kind of classification algorithm is appropriate for a specific problem area. In other words, determining which classification algorithm is appropriate depending on the characteristics of the dataset was has been a task that required expertise and effort. This is because the relationship between the characteristics of datasets (called meta-features) and the performance of classification algorithms has not been fully understood. Moreover, there has been little research on meta-features reflecting the characteristics of multi-class. Therefore, the purpose of this study is to empirically analyze whether meta-features of multi-class datasets have a significant effect on the performance of classification algorithms. In this study, meta-features of multi-class datasets were identified into two factors, (the data structure and the data complexity,) and seven representative meta-features were selected. Among those, we included the Herfindahl-Hirschman Index (HHI), originally a market concentration measurement index, in the meta-features to replace IR(Imbalanced Ratio). Also, we developed a new index called Reverse ReLU Silhouette Score into the meta-feature set. Among the UCI Machine Learning Repository data, six representative datasets (Balance Scale, PageBlocks, Car Evaluation, User Knowledge-Modeling, Wine Quality(red), Contraceptive Method Choice) were selected. The class of each dataset was classified by using the classification algorithms (KNN, Logistic Regression, Nave Bayes, Random Forest, and SVM) selected in the study. For each dataset, we applied 10-fold cross validation method. 10% to 100% oversampling method is applied for each fold and meta-features of the dataset is measured. The meta-features selected are HHI, Number of Classes, Number of Features, Entropy, Reverse ReLU Silhouette Score, Nonlinearity of Linear Classifier, Hub Score. F1-score was selected as the dependent variable. As a result, the results of this study showed that the six meta-features including Reverse ReLU Silhouette Score and HHI proposed in this study have a significant effect on the classification performance. (1) The meta-features HHI proposed in this study was significant in the classification performance. (2) The number of variables has a significant effect on the classification performance, unlike the number of classes, but it has a positive effect. (3) The number of classes has a negative effect on the performance of classification. (4) Entropy has a significant effect on the performance of classification. (5) The Reverse ReLU Silhouette Score also significantly affects the classification performance at a significant level of 0.01. (6) The nonlinearity of linear classifiers has a significant negative effect on classification performance. In addition, the results of the analysis by the classification algorithms were also consistent. In the regression analysis by classification algorithm, Naïve Bayes algorithm does not have a significant effect on the number of variables unlike other classification algorithms. This study has two theoretical contributions: (1) two new meta-features (HHI, Reverse ReLU Silhouette score) was proved to be significant. (2) The effects of data characteristics on the performance of classification were investigated using meta-features. The practical contribution points (1) can be utilized in the development of classification algorithm recommendation system according to the characteristics of datasets. (2) Many data scientists are often testing by adjusting the parameters of the algorithm to find the optimal algorithm for the situation because the characteristics of the data are different. In this process, excessive waste of resources occurs due to hardware, cost, time, and manpower. This study is expected to be useful for machine learning, data mining researchers, practitioners, and machine learning-based system developers. The composition of this study consists of introduction, related research, research model, experiment, conclusion and discussion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.