• Title/Summary/Keyword: Marker Gene

Search Result 1,194, Processing Time 0.032 seconds

Identification of Upregulated APOA1 Protein of Chicken Liver in Pullorum Disease (추백리가 감염된 닭의 간에서 발현이 증가하는 APOA1 단백질의 확인)

  • Jung K. C.;Lee Y. J.;Yu S. L.;Lee J. H.;Jang B. K.;Koo Y. B.;So H. K.;Choi K. D.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The aim of this study was to investigate differentially expressed proteins between normal chicken liver and chicken liver inffeted by Salmonella pullorum. 2-dimensional electrophoresis (2DE) and mass spectrometry (MS) were used to identify the proteins. More than 300 protein spots were detected on silver stained 2DE gels using pH 3$\~$10 gradients. The most outstanding protein spot was further analyzed by MALDI-TOF MS and protein database using the Mascot search engine. The protein was finally identified as APOAI (Apolipoprotein AI). Based on the known function of the APOAI, this gene acts protective action against the accumulation of platelet thrombin at the site of vascular damage for the pullorum disease. Therefore APOAI protein, identified in this study, can be a valuable biomarker in relation to the pullorum disease in chicken.

Phylogenetic relationships of Iranian Allium species using the matK (cpDNA gene) region

  • Zarei, Hemadollah;Fakheri, Barat Ali;Naghavi, Mohammad Reza;Mahdinezhad, Nafiseh
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • Allium L. is one of the largest genera of the Amaryllidaceae family, with more than 920 species including many economically important species used as vegetables, spices, medicines, or ornamental plants. Currently, DNA barcoding tools are being successfully used for the molecular taxonomy of Allium. A total of 46 Allium species were collected from their native areas, and DNA was extracted using the IBRC DNA extraction kit. We used specific primers to PCR amplify matK. DNA sequences were edited and aligned for homology, and a phylogenetic tree was constructed using the neighbor-joining method. The results show thymine (38.5%) was the most frequent and guanine (13.9%) the least frequent nucleotide. The matK regions of the populations were quite highly conserved, and the amount of C and CT was calculated at 0.162 and 0.26, respectively. Analysis of the nucleotide substitution showed C-T (26.22%) and A-G (8.08%) to have the highest and lowest percent, respectively. The natural selection process dN/dS was 1.16, and the naturality test results were -1.5 for Tajima's D and -1.19 for Fu's Fs. The NJ dendrogram generated three distinct clades: the first contained Allium austroiranicum and A. ampeloprasum; the second contained A. iranshahrii, A. bisotunense, and A. cf assadi; and the third contained A. rubellum and other species. In this study, we tested the utility of the matK region as a DNA barcode for discriminating Allium. species.

BK Knockout by TALEN-Mediated Gene Targeting in Osteoblasts: KCNMA1 Determines the Proliferation and Differentiation of Osteoblasts

  • Hei, Hongya;Gao, Jianjun;Dong, Jibin;Tao, Jie;Tian, Lulu;Pan, Wanma;Wang, Hongyu;Zhang, Xuemei
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.530-535
    • /
    • 2016
  • Large conductance calcium-activated potassium (BK) channels participate in many important physiological functions in excitable tissues such as neurons, cardiac and smooth muscles, whereas the knowledge of BK channels in bone tissues and osteoblasts remains elusive. To investigate the role of BK channels in osteoblasts, we used transcription activator-like effector nuclease (TALEN) to establish a BK knockout cell line on rat ROS17/2.8 osteoblast, and detected the proliferation and mineralization of the BK-knockout cells. Our study found that the BKknockout cells significantly decreased the ability of proliferation and mineralization as osteoblasts, compared to the wild type cells. The overall expression of osteoblast differentiation marker genes in the BK-knockout cells was significantly lower than that in wild type osteoblast cells. The BK-knockout osteoblast cell line in our study displays a phenotype decrease in osteoblast function which can mimic the pathological state of osteoblast and thus provide a working cell line as a tool for study of osteoblast function and bone related diseases.

Anti-Diabetic and Anti-Inflammatory Effects of Purple Corn Extract in High-Fat Diet Induced Obesity Mice (고지방식이 비만 유도 마우스에서 자색옥수수 추출물의 항당뇨 및 항염증 효과)

  • Joung, Hyunchae;Kim, Chai-hee;Lee, Yejoo;Kim, Soon-kwon;Do, Myoung-Sool
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.696-702
    • /
    • 2017
  • Metabolic syndrome, including obesity, glucose intolerance and elevated blood pressure, is related to type 2 diabetes and cardiovascular disease. Previous studies have reported the anti-oxidative, anti-inflammatory and anti-diabetic effects of purple corn extract. We investigated the efficacy of purple corn extract (PC) against high-fat diet (HFD)-induced obesity and glucose intolerance, and examined the underlying mechanisms by analyzing expression of proteins and genes involved in glucose regulation and macrophage infiltration. C57BL/6 mice were fed with normal chow diet (ND), or HFD treated with distilled water (DW, control) or PC, for 10 weeks. Although body weights were similar in the HFD-fed groups, we observed a decrease in the liver and epididymal adipose tissue (EAT) weights, and enhanced glucose tolerance test (GTT) results in the PC group, as compared with DW group. Liver showed increased Akt phosphorylation in the PC-treated mice; however, no changes were observed in the EAT, for all groups. In PC-treated mice, decreased macrophage infiltration was seen in the EAT, with a reduced expression of macrophage marker genes. Finally, proinflammatory cytokine gene expressions were decreased by PC in the EAT, and a modest trend for downregulation was observed in the liver. Hence, we conclude that PC may decrease glucose intolerance by increasing the phosphorylation of Akt and reducing the macrophage infiltration into the EAT.

Neurochemical Characterization of the TRPV1-Positive Nociceptive Primary Afferents Innervating Skeletal Muscles in the Rats

  • Shin, Dong-Su;Kim, Eun-Hyun;Song, Kwan-Young;Hong, Hyun-Jong;Kong, Min-Ho;Hwang, Se-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • Objective: Transient receptor potential vanilloid subfamily type 1 (TRPV1), a most specific marker of the nociceptive primary afferent, is expressed in peptidergic and non-peptidergic primary afferents innervating skin and viscera. However, its expression in sensory fibers to skeletal muscle is not well known. In this study, we studied the neurochemical characteristics of TRPV1-positive primary afferents to skeletal muscles. Methods: Sprague-Dawley rats were injected with total $20{\mu}l$ of 1% fast blue (FB) into the gastrocnemius and erector spinae muscle and animals were perfused 4 days after injection. FB-positive cells were traced in the L4-L5 (for gastrocnemius muscle) and L2-L4 (for erector spinae muscle) dorsal root ganglia. The neurochemical characteristics of the muscle afferents were studied with multiple immunofluorescence with TRPV1, calcitonin gene-related peptide (CGRP) and $P2X_3$. To identify spinal neurons responding to noxious stimulus to the skeletal muscle, 10% acetic acids were injected into the gastrocnemius and erector spinae muscles and expression of phospho extracellular signal-regulated kinase (pERK) in spinal cords were identified with immunohistochemical method. Results: TRPVl was expressed in about 49% of muscle afferents traced from gastrocnemius and 40% of erector spinae. Sixty-five to 60% of TRPV1-positive muscles afferents also expressed CGRP. In contrast, expression of $P2X_3$ immnoreaction in TRPV1-positive muscle afferents were about 20%. TRPV1-positive primary afferents were contacted with spinal neurons expressing pERK after injection of acetic acid into the muscles. Conclusion: It is consequently suggested that nociception from skeletal muscles are mediated by TRPV1-positive primary afferents and majority of them are also peptidergic.

Genetic Diversity Analysis of Proso millet (Panicum miliaceum) Germplasm Using EST-SSR Markers

  • Lee, Myung-Chul;Choi, Yu-Mi;Yun, Hyemyeong;Shin, Myoung-Jae;Lee, Sukyeung;Oh, Sejong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.43-43
    • /
    • 2019
  • The collection, evaluation and conservation of crop germplasm have been treated as one of the basics to breeding program. An understanding of genetic relationships among germplasm resources is vital for future breeding process like yield, quality, and resistance. In the present study, EST-SSR markers were employed to assess the polymorphism and genetic diversity of 192 accessions of Proso millet preserved in the National Agrobiodiversity Center of RDA. We evaluated the efficiency of EST-SSR markers developed for proso millet species. A total of 98 alleles were detected with an average allele number of 4.5 per locus among 192 proso millet millet accessions using 22 EST-SSR markers. The averaged values of gene diversity ($H_E$) and polymorphism information content (PIC) for each EST-SSR marker were 0.362 and 0.404 within populations, respectively. Our results showed the moderate level of the molecular diversity among the proso millet accessions from diverse countries. A phylogenetic tree revealed three major groups of accessions that did not correspond with geographical distribution patterns with a few exceptions. The less correlation between the clusters and their geographic location might be considered due to their type difference. Our study provided a better understanding of genetic relationships among various germplasm collections, and it could contribute to more efficient utilization of valuable genetic resources. The EST-SSR markers developed here will serve as a valuable resource for genetic studies, like linkage mapping, diversity analysis, quantitative trait locus/association mapping, and molecular breeding.

  • PDF

Development and Evaluation of QTL-NILs for Grain Weight from an Interspecific Cross in Rice

  • Yun, Yeo-Tae;Kim, Dong-Min;Park, In-Kyu;Chung, Chong-Tae;Seong, Yeaul-Kyu;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.357-364
    • /
    • 2010
  • In a previous study, we mapped 12 QTLs for 1,000 grain weight (TGW) in the 172 $BC_2F_2$ lines derived from a cross between Oryza sativa ssp. Japonica cv. Hwaseongbyeo and O. rufipogon. These QTLs explained 5.4 - 11.4% of the phenotypic variance for TGW. Marker-aided selection combined with backcrosses was employed to develop QTL-NILs for each QTL. $BC_2F_2$ lines with each target QTL were backcrossed to Hwaseongbyeo twice and then allowed to self to produce $BC_4F_5$ populations. SSR markers linked to TGW were employed to select QTL-NILs with the respective target QTL. Six QTL-NILs with the recurrent parent, Hwaseongbyeo were evaluated for nine traits for three years from 2007 and 2009. Differences were observed between each of the 6 QTL-NILs and Hwaseongbyeo in TGW. In addition to TGW, these QTL-NILs displayed differences in other agronomic traits possibly indicating a tight linkage of genes controlling these traits. The direction of the QTL for TGW in 6 QTL-NILs was consistent as in the $BC_2F_2$ lines from the same cross. Difference in TGW between each of the QTL-NILs and Hwaseongbyeo was associated with the difference in one or two grain shape traits; grain length, grain width, and grain thickness. SSR markers linked to the QTL for TGW will facilitate selection of the grain shape character in a breeding program to diversify grain shape and provide the foundation for map-based gene isolation. Also, the QTL-NILs developed in this report and the progenies from crosses between the QTL-NILs will be useful in clarifying epistatic interactions among QTLs for TGW.

Application of SCAR markers to self-incompatibility genotyping in breeding lines of radish (Raphanus sativus L.)

  • Chung, Hee;Kim, Su;Park, HanYong;Kim, Ki-Taek
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • Self-incompatibility (SI) prevents self-fertilization by inhibiting the pollen tube growth of self-pollen. Molecular analysis has revealed that the S locus comprises a number of genes, such as the S-locus glycoprotein (SLG), the S-locus receptor kinase (SRK), and SP11 (SCR). Although molecular markers related to those genes have been developed, a simple S-haplotype detecting method has not been reported due to the highly polymorphic and relatively small coding regions. In this study, the sequence characterized amplified region (SCAR) markers were used to establish an efficient radish genotyping method. We identified the S-haplotypes of 192 radish accessions using 19 different markers, which proved to be highly reliable. The accessions were assigned to 17 types of S-haplotypes, including 8 types of SRKs and 9 types of SLGs. Since the developed SCAR markers are based on their gene sequences, we could easily identify the S-haplotypes by a single specific band, with the highest frequencies detected for SLG 5, SRK 1, and SLG 1, in order. Among the tested markers, the SLG 1, SRK 1, and SRK 5 markers exhibited high reliability, compared to phenotypic results. Furthermore, we identified the seven types of unreported SLGs using SLG Class -I and -II specific markers. Although the developed SCAR markers still need to be improved for the genotyping of all S-haplotypes, these markers could be helpful for monitoring inbred lines, and for developing the MAS in radish breeding programs.

Analysis of Molecular Variance and Population Structure of Sesame (Sesamum indicum L.) Genotypes Using Simple Sequence Repeat Markers

  • Asekova, Sovetgul;Kulkarni, Krishnanand P.;Oh, Ki Won;Lee, Myung-Hee;Oh, Eunyoung;Kim, Jung-In;Yeo, Un-Sang;Pae, Suk-Bok;Ha, Tae Joung;Kim, Sung Up
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.321-336
    • /
    • 2018
  • Sesame (Sesamum indicum L.) is an important oilseed crop grown in tropical and subtropical areas. The objective of this study was to investigate the genetic relationships among 129 sesame landraces and cultivars using simple sequence repeat (SSR) markers. Out of 70 SSRs, 23 were found to be informative and produced 157 alleles. The number of alleles per locus ranged from 3 - 14, whereas polymorphic information content ranged from 0.33 - 0.86. A distance-based phylogenetic analysis revealed two major and six minor clusters. The population structure analysis using a Bayesian model-based program in STRUCTURE 2.3.4 divided 129 sesame accessions into three major populations (K = 3). Based on pairwise comparison estimates, Pop1 was observed to be genetically close to Pop2 with $F_{ST}$ value of 0.15, while Pop2 and Pop3 were genetically closest with $F_{ST}$ value of 0.08. Analysis of molecular variance revealed a high percentage of variability among individuals within populations (85.84%) than among the populations (14.16%). Similarly, a high variance was observed among the individuals within the country of origins (90.45%) than between the countries of origins. The grouping of genotypes in clusters was not related to their geographic origin indicating considerable gene flow among sesame genotypes across the selected geographic regions. The SSR markers used in the present study were able to distinguish closely linked sesame genotypes, thereby showing their usefulness in assessing the potentially important source of genetic variation. These markers can be used for future sesame varietal classification, conservation, and other breeding purposes.

The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study

  • Suwannasing, Rattikan;Duangjinda, Monchai;Boonkum, Wuttigrai;Taharnklaew, Rutjawate;Tuangsithtanon, Komson
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1852-1862
    • /
    • 2018
  • Objective: The purpose of this study was to investigate a single step genome-wide association study (ssGWAS) for identifying genomic regions affecting reproductive traits in Landrace and Large White pigs. Methods: The traits included the number of pigs weaned per sow per year (PWSY), the number of litters per sow per year (LSY), pigs weaned per litters (PWL), born alive per litters (BAL), non-productive day (NPD) and wean to conception interval per litters (W2CL). A total of 321 animals (140 Landrace and 181 Large White pigs) were genotyped with the Illumina Porcine SNP 60k BeadChip, containing 61,177 single nucleotide polymorphisms (SNPs), while multiple traits single-step genomic BLUP method was used to calculate variances of 5 SNP windows for 11,048 Landrace and 13,985 Large White data records. Results: The outcome of ssGWAS on the reproductive traits identified twenty-five and twenty-two SNPs associated with reproductive traits in Landrace and Large White, respectively. Three known genes were identified to be candidate genes in Landrace pigs including retinol binding protein 7, and ubiquitination factor E4B genes for PWL, BAL, W2CL, and PWSY and one gene, solute carrier organic anion transporter family member 6A1, for LSY and NPD. Meanwhile, five genes were identified to be candidate genes in Large White, two of which, aldehyde dehydrogenase 1 family member A3 and leucine rich repeat kinase 1, associated with all of six reproduction traits and three genes; retrotransposon Gag like 4, transient receptor potential cation channel subfamily C member 5, and LHFPL tetraspan subfamily member 1 for five traits except W2CL. Conclusion: The genomic regions identified in this study provided a start-up point for marker assisted selection and estimating genomic breeding values for improving reproductive traits in commercial pig populations.