• Title/Summary/Keyword: Maritime ICT

Search Result 98, Processing Time 0.02 seconds

Targetless displacement measurement of RSW based on monocular vision and feature matching

  • Yong-Soo Ha;Minh-Vuong Pham;Jeongki Lee;Dae-Ho Yun;Yun-Tae Kim
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.207-218
    • /
    • 2023
  • Real-time monitoring of the behavior of reinforced soil retaining wall (RSW) is required for safety checks. In this study, a targetless displacement measurement technology (TDMT) consisting of an image registration module and a displacement calculation module was proposed to monitor the behavior of RSW, in which facing displacement and settlement typically occur. Laboratory and field experiments were conducted to compare the measuring performance of natural target (NT) with the performance of artificial target (AT). Feature count- and location-based performance metrics and displacement calculation performance were analyzed to determine their correlations. The results of laboratory and field experiments showed that the feature location-based performance metric was more relevant to the displacement calculation performance than the feature count-based performance metric. The mean relative errors of the TDMT were less than 1.69 % and 5.50 % for the laboratory and field experiments, respectively. The proposed TDMT can accurately monitor the behavior of RSW for real-time safety checks.

Horizontal and vertical movement patterns of yellowtail (Seriola quinqueradiata) in the East Sea of Korea

  • Jikang Park;Won Young Lee;Seungjae Baek;Sung-Yong Oh
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.76-86
    • /
    • 2024
  • The bio-logging method could be a valuable approach to studying the underwater movement of marine fish. We investigated the horizontal and vertical movement patterns of two yellowtails Seriola quinqueradiata weighing 8.7 kg and 9.5 kg with a popup satellite archival tag from October 2020 to January 2021 in the East Sea of Korea. Our results showed that a yellowtail migrated northward in October and November, and then shifted southward in mid-December. The average swimming depth and temperature of the fish monitored over 82 days were 24.9 ± 9.3 m (average ± SD) and 16.5 ± 1.9℃, respectively, and the total traveled distance was 1,172.4 km. The fish swam significantly deeper during the daytime (33.70 ± 14.80 m) than at nighttime (20.65 ± 8.44 m) from November to December (p < 0.05). These results suggest that the horizontal migratory route of yellowtails in accordance with the East Korea Warm Current which is the main branch of Tsushima Warm Current in the fall and early winter seasons, and showed significant diel vertical movement patterns from November to December.

A Study on the Strategy of IoT Industry Development in the 4th Industrial Revolution: Focusing on the direction of business model innovation (4차 산업혁명 시대의 사물인터넷 산업 발전전략에 관한 연구: 기업측면의 비즈니스 모델혁신 방향을 중심으로)

  • Joeng, Min Eui;Yu, Song-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-75
    • /
    • 2019
  • In this paper, we conducted a study focusing on the innovation direction of the documentary model on the Internet of Things industry, which is the most actively industrialized among the core technologies of the 4th Industrial Revolution. Policy, economic, social, and technical issues were derived using PEST analysis for global trend analysis. It also presented future prospects for the Internet of Things industry of ICT-related global research institutes such as Gartner and International Data Corporation. Global research institutes predicted that competition in network technologies will be an issue for industrial Internet (IIoST) and IoT (Internet of Things) based on infrastructure and platforms. As a result of the PEST analysis, developed countries are pushing policies to respond to the fourth industrial revolution through cooperation of private (business/ research institutes) led by the government. It was also in the process of expanding related R&D budgets and establishing related policies in South Korea. On the economic side, the growth tax of the related industries (based on the aggregate value of the market) and the performance of the entity were reviewed. The growth of industries related to the fourth industrial revolution in advanced countries overseas was found to be faster than other industries, while in Korea, the growth of the "technical hardware and equipment" and "communication service" sectors was relatively low among industries related to the fourth industrial revolution. On the social side, it is expected to cause enormous ripple effects across society, largely due to changes in technology and industrial structure, changes in employment structure, changes in job volume, etc. On the technical side, changes were taking place in each industry, representing the health and medical sectors and manufacturing sectors, which were rapidly changing as they merged with the technology of the Fourth Industrial Revolution. In this paper, various management methodologies for innovation of existing business model were reviewed to cope with rapidly changing industrial environment due to the fourth industrial revolution. In addition, four criteria were established to select a management model to cope with the new business environment: 'Applicability', 'Agility', 'Diversity' and 'Connectivity'. The expert survey results in an AHP analysis showing that Business Model Canvas is best suited for business model innovation methodology. The results showed very high importance, 42.5 percent in terms of "Applicability", 48.1 percent in terms of "Agility", 47.6 percent in terms of "diversity" and 42.9 percent in terms of "connectivity." Thus, it was selected as a model that could be diversely applied according to the industrial ecology and paradigm shift. Business Model Canvas is a relatively recent management strategy that identifies the value of a business model through a nine-block approach as a methodology for business model innovation. It identifies the value of a business model through nine block approaches and covers the four key areas of business: customer, order, infrastructure, and business feasibility analysis. In the paper, the expansion and application direction of the nine blocks were presented from the perspective of the IoT company (ICT). In conclusion, the discussion of which Business Model Canvas models will be applied in the ICT convergence industry is described. Based on the nine blocks, if appropriate applications are carried out to suit the characteristics of the target company, various applications are possible, such as integration and removal of five blocks, seven blocks and so on, and segmentation of blocks that fit the characteristics. Future research needs to develop customized business innovation methodologies for Internet of Things companies, or those that are performing Internet-based services. In addition, in this study, the Business Model Canvas model was derived from expert opinion as a useful tool for innovation. For the expansion and demonstration of the research, a study on the usability of presenting detailed implementation strategies, such as various model application cases and application models for actual companies, is needed.

A Study on Minimization of Harbor Oscillations by Infragravity Waves Using Permeable Breakwater (투과제를 이용한 중력외파의 항내 수면진동 저감 방법에 대한 연구)

  • Kwak, Moon Su;Jeong, Weon Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.434-445
    • /
    • 2020
  • In this study, the minimization of harbor oscillation using permeable breakwater was applied to the actual harbor and investigated an effect of minimization by computer simulation in order to take into account the water quality problems and measures of harbor oscillation by infragravity waves at the same time. The study site is Mukho harbor located at East coast of Korea that harbor oscillation has been occurred frequently. The infragravity waves obtained by analyzing the observed field data for five years focused on the distribution between wave periods of 40 s and 70 s and wave heights in less than 0.1 m was 94% of analyzing data. The target wave periods was 68.0 s. The most effective method of minimization of harbor oscillation by infragravity waves was to install a detached permeable breakwater with transmission coefficient of 0.3 on the outside harbor and replace some area of the vertical wall in the harbor with wave energy dissipating structure to achieve a reflectivity of 0.9 or less. The amplitude reduction rate of this method shown in 27.4%. And the effect of the difference in transmission coefficient of permeable breakwater on the reduction rate of the amplitude was not significant.

Estimation of the Input Wave Height of the Wave Generator for Regular Waves by Using Artificial Neural Networks and Gaussian Process Regression (인공신경망과 가우시안 과정 회귀에 의한 규칙파의 조파기 입력파고 추정)

  • Jung-Eun, Oh;Sang-Ho, Oh
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.315-324
    • /
    • 2022
  • The experimental data obtained in a wave flume were analyzed using machine learning techniques to establish a model that predicts the input wave height of the wavemaker based on the waves that have experienced wave shoaling and to verify the performance of the established model. For this purpose, artificial neural network (NN), the most representative machine learning technique, and Gaussian process regression (GPR), one of the non-parametric regression analysis methods, were applied respectively. Then, the predictive performance of the two models was compared. The analysis was performed independently for the case of using all the data at once and for the case by classifying the data with a criterion related to the occurrence of wave breaking. When the data were not classified, the error between the input wave height at the wavemaker and the measured value was relatively large for both the NN and GPR models. On the other hand, if the data were divided into non-breaking and breaking conditions, the accuracy of predicting the input wave height was greatly improved. Among the two models, the overall performance of the GPR model was better than that of the NN model.

Functional Requirements to Develop the Marine Navigation Supporting System for Northern Sea Route (북극해 안전운항 지원시스템 구축을 위한 기능적 요구조건 도출)

  • Hong, Sung Chul;Kim, Sun Hwa;Yang, Chan Su
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • International attention on the Northern Sea Route has been increased as the decreased sea-ice extents in Northern Sea raise the possibility to develop new sea routes and natural resources. However, to protect ships' safety and pristine environments in polar waters, International Maritime Organization(IMO) has been developing the Polar Code to regulate polar shipping. The marine navigation supporting system is essential for ships traveling long distance in the Northern Sea as they are affected by ocean weather and sea-ice. Therefore, to cope with the IMO Polar Code, this research proposes the functional requirements to develop the marine navigation supporting system for the Northern Sea Route. The functional requirements derived from the IMO Polar code consist of arctic voyage risk map, arctic voyage planning and MSI(Marine Safety Information) methods, based on which the navigation supporting system is able to provide dynamic and safe-economical sea route service using the sea-ice observation and prediction technologies. Also, a requirement of the system application is derived to apply the marine navigation supporting system for authorizing ships operating in the Northern Sea. To reflect the proposed system in the Polar Code, continual international exchange and policy proposals are necessary along with the development of sea-ice observation and prediction technologies.

A Study on the Intention to Use Big Data Based on the Technology Organization Environment and Innovation Diffusion Theory in Shipping and Port Organization (TOE와 혁신확산이론에 따른 해운항만조직의 빅데이터 사용의도에 관한 연구)

  • Lee, Joon-Peel;Chang, Myung-Hee
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.3
    • /
    • pp.159-182
    • /
    • 2018
  • The purpose of this study is to increase the competitiveness of big data in the maritime port organization, by understanding the expected performance and the intention to accept and use big data. In the empirical analysis of factors affecting the intention to use the big data technology for maritime port organizations, the variables employed are based on the Technology Organization Environment(TOE) and Diffusion of Innovations(DOI) theories, which are related to the acceptance of information and communication technologies. To achieve the objective of this study, an empirical analysis was conducted; this analysis targeted the personnel involved in the department of strategic planning and information technology in the related field. We set up eight hypotheses to examine the relevance between variables having three characteristics-technology, organization, and environmental characteristics. The empirical results are summarized as follows. First, it was seen that the technology characteristic, including relative advantage, complexity, and compatibility, has a significant effect on the expected performance. Second, the top management support of the organization characteristic has a significant effect, but the firm size of this characteristic has no significant effect on the expected performance. Third, the competitive pressure of the environment characteristic has a positive effect on the expected performance, while the regulatory support has no significant effect. Finally, the expected performance has a significant effect on the intention to use big data.

Vessel and Navigation Modeling and Simulation based on DEVS Formalism : Design for Navigation Simulation Architecture with Modeling for Critical Systems and Agents of Vessel (DEVS 형식론 기반의 선박 항해 모델링 및 시뮬레이션 (I) : 항해 시뮬레이션 아키텍처 설계와 선박 핵심 장비 및 에이전트 모델링)

  • Woo, Sang-Min;Lee, Jang-Se;Hwang, Hun-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1038-1048
    • /
    • 2019
  • Recently, various systems have been developed to support ship navigation safety. In order to verify the usefulness of such a system, it is most ideal to try it on a real vessel, but there are many difficulties. As an alternative, usability verification methods applied with modelling and simulation (M&S) techniques are required such as FMSS, which is closest to reality, is very expansive to construct, and there needs the specialized operator. For this reason, this paper proposes a method to verify the navigation safety support system by modeling and simulation techniques based on the Discrete Event System Specification (DEVS) formalism. As a first step, we designed the navigation simulation architecture based on the SES/MB framework, and details on modelling ship core equipment and navigator agents based on the DEVS. Through this, we are able to implement the navigation simulation system for vessels, and evaluate the effectiveness of navigation safety support elements such as collision avoidance, etc. using developed scenarios.

Independence and Homogeneity Tests of the Annual Maxima Data used to Estimate the Design Wave Height (설계파고 추정에 사용한 연 최대 자료의 독립 및 분포 동질 검정)

  • Cho, Hong Yeon;Jeong, Weon Mu;Back, Jong Dai
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.26-38
    • /
    • 2020
  • A statistical test was carried out on the IID (Independently and Identically Distributed) assumption of the AM (Annual Maxima) data used to estimate the design wave height. The test was divided into independence (randomness) test and homogeneity test, and each test was conducted on AM data of 210 and 310 stations in coastal and inner coastal grids in typhoon and non-typhoon (monsoon) conditions. As a result of the independence test, the rejection ratios of the test are in the range of 1.8~5.3% and 1.4~6.0% for the non-typhoon and typhoon data sets, respectively. On the other hand, in the distribution difference test of typhoon data and nontyphoon data, the same distribution hypothesis was found to be rejected in the range of 47~79% according to the test method for both coastal grid and inner coastal grid. Therefore, in estimating design wave height by extreme value analysis, the estimation process by dividing the typhoon and non-typhoon data is appropriate.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.